Для проведения более качественной экспертизы исходный перечень из 70 критических технологий федерального уровня был детализирован, таким образом, что каждая КТФУ была разбита на три пять технологий, раскрывающих в совокупности ее содержание. Всего в детализированном перечне - 258 технологий. Он подробно обсуждался и был согласован с соответствующими управлениями Миннауки России, координирующими различные направления развития науки и техники [7].
В процессе экспертизы оценивались технологии детализированного перечня, а затем рассчитывались интегральные характеристики КТФУ. Это дало возможность не просто оценить и сравнить состояние отдельных критических технологий, но и выявить сильные и слабые стороны каждой из них.
По технологиям рассчитывались как балльные оценки, так и показатели доли экспертов (в %), выбравших тот или иной вариант ответа.
2.2 Результаты экспертных оценок.
Оценки оказались весьма неоднородными. Для экономического развития наиболее актуальны информационные технологии и биотехнологии, для социального развития - экологические и медицинские, для повышения обороноспособности - информационные технологии и электроника, авиакосмические и навигационные системы, для улучшения экологической обстановки - природоохранные технологии и повышение безопасности атомной энергетики.
Из действующего перечня КТФУ, Россия по мнению экспертов, имеет «сильные» позиции по 19 технологиям, по 2 лидирует, а по 17 не уступает лучшим зарубежным разработкам.
Однако «сильные» технологические позиции страны далеко не всегда преобразуются в конкурентные преимущества на стадии промышленного применения технологий. Лишь по 10 из 70 критических технологий более 40% экспертов отметили потенциальные возможности выхода России на мировой рынок.
Результаты исследований показали слабую корреляционную связь между уровнем отечественных разработок отдельных технологий, их актуальностью и практической значимостью.
Эксперты, отметившие высокую актуальность критической технологии «иформационно-телекоммуникационные системы» (высшие рейтинги по актуальности с точки зрения экономического прогресса, социального развития и обороноспособности), отводят ей место в 3-4 десятке по перспективам выхода на мировой рынок из-за отставания от зарубежных аналогов. В то же время такие технологии, «Технологии электронного переноса энергии», «Нетрадиционные технологии добычи и переработки твердых видов топлива и урана» и «Трубопроводный транспорт угольной суспензии», несмотря на лидирующие позиции Российских разработчиков, имеют низкие показатели перспектив выхода на мировой рынок и средней по актуальности практической значимости. Из этого примера ясно, перед какой дилеммой стоит руководство российской науки: поддержать в первую очередь те области, где Россия является мировым лидером или те, где мы пока отстаем, но которые жизненно необходимы для отечественной экономики. Чтобы ее решить, нужен серьезный экономический анализ и социально-политический прогноз [3].
По восьми ТКФУ более 40% экспертов считают целесообразным отказаться от их дальнейшей разработки, перейти на использование подобных или замещающихся технологий либо переориентироваться на импорт готовой продукции. Причины предлагаемого отказа от дальнейшей разработки технологий различны. Так, в направлениях «Информационные технологии и электроника», «Технологии живых систем», «Топливо и энергетика», «Экология и рациональное природопользование» чаще всего отмечается наличие подобных и замещающих технологий за рубежом; в направлениях «Производственные технологии» и «Новые материалы и химические продукты» - низкий технический уровень производства и отсутствие необходимых производственных мощностей, а в направлении «Транспорт» низкая конкурентоспособность потенциальных результатов. Все это свидетельствует о том, что в отдельных областях отставание России от западных стран может стать непреодолимым.
Технологии, по которым российские разработки превосходят лучшие зарубежные аналоги |
1. Системы жизнеобеспечения и защиты человека в экстремальных условиях 2. Трубопроводы для транспортировки угольной суспензии |
Технологии, по которым уровень российских разработок соответствует лучшим зарубежным аналогам |
1. Системы распознавания и синтеза речи, текста и изображений 2. Системы математического моделирования 3. Лазерные технологии 4. Электронно-ионно-плазменные технологии |
5. Технологии ускоренной оценки и комплексного освоения стратегически важного горнорудного (алмазы, золото, платина) и техногенного сырья 6. Композиты 7. Авиационная и космическая техника с использованием новых технических решений, включая нетрадиционные компоновочные схемы 8. Технологии изучения недр, прогнозирования, поиска, разведки запасов полезных ископаемых и урана 9. Технологии разрушения горных пород, проходки горных выработок и бурения нефтяных и газовых скважин 10. Технологии воздействия на нефтегазовые пласты 11. Нетрадиционные технологии добычи и переработки твердых видов топлива и урана 12. Технологии углубленной переработки нефти, газа и конденсата 13. Атомная энергетика 14. Технологии регенерации отработавшего ядерного топлива, утилизации и захоронения радиоактивных отходов 15. Технологии электронного переноса энергии 16. Водородная энергетика 17. Технологии прогнозирования развития климатических, экосистемных, горно-геологических и ресурсных изменений |
Отвечая на вопрос о том, какие первоочередные меры потребуются для ускорения научных разработок и их реализации, от 80-90% экспортёров указали на необходимость увеличения финансирования; 70% экспортёров отметили важность доведения разработок до состояния инвестиционных проектов. Особо подчёркивалась острота проблемы ускорения кадров и необходимости привлечения молодёжи в первую очередь в сферу информационных технологий и электроники, производственных технологий, экологии.
КТФУ, имеющие наибольшие перспективы выхода на мировой рынок |
1. Авиационная и космическая техника с использованием новых технических решений, включая нетрадиционные компоновочные системы 2. Атомная энергетика 3. Системы распознавания и синтеза речи, текста и изображений 4. Технологии регенерации отработавшего ядерного топлива, утилизации и захоронения радиоактивных отходов 5. Многопроцессорные ЭВМ с параллельной структурой 6. Системы математического моделирования 7. Рекомбинантные вакцины 8. Транспортные средства на альтернативных видах топлива 9. Полимеры 10. Лазерные технологии |
3. Наука Западной Европы: реалии и перспективы.
Развитие науки и технологии на протяжении трех минувших веков происходило под бэконовским афористичным девизом «Знание — сила». В этот период наука Европы как часть европейской культуры (с ее еще в античности сформировавшимся пониманием исследования как объективного процесса, основанного на логических рассуждениях и измерениях) не имела равных в мире и триумфально преумножала свои достижения как в естествознании, так и в технических и социальных дисциплинах: «Исторически сама идея прогресса, которая не старше Фрэнсиса Бэкона и Рене Декарта, родилась как идея научного прогресса».
Однако в XX веке ситуация кардинально изменилась. Уже к 1930-м, еще до массовой эмиграции европейских ученых в США, начала заявлять о себе в мировом масштабе американская наука, хотя первоначально и преимущественно как промышленная наука. Взаимодействие европейской и американской науки имеет сегодня не только прагматический, но и в значительной степени символический смысл: США давно стали бесспорным мировым лидером постиндустриальной, технологической науки; носителем же традиций фундаментального теоретического знания по-прежнему остается Западная Европа. В культурологическом плане евро-американское сотрудничество предстает как взаимодействие «науки — творчества» и «науки — массового производства». Похоже, именно этим взаимодействием и будут определяться основные параметры науки наступившего столетия [2]. )