В рамках экологических проблем среди нередко провоцируемых сильными землетрясениями, то есть вторичных, последствий следует отметить (на фоне повреждения и гибели ландшафтных и культурных памятников и нарушения среды обитания как таковой) такие, как возникновение эпидемий и эпизоотий, рост заболеваний и нарушение воспроизводства населения, сокращение пищевой базы (гибель запасов, потеря скота, вывод из строя или ухудшение качества сельскохозяйственных угодий), неблагоприятные изменения ландшафтных условий (например, оголение горных склонов, заваливание долин, гидрологические и гидрогеологические изменения), ухудшение качества атмосферного воздуха из-за туч поднятой пыли и появления аэрозольных частиц в результате возникающих при землетрясении пожаров, снижение качества воды, а также качества и ёмкости рекреационно-оздоровительных ресурсов.
Воздействие сильных землетрясений на природную среду (геологическую среду, ландшафтную оболочку) может быть весьма разнообразным и значительным, хотя в большинстве случаев ареал (зона) изменений не превышает 100-200км.
Среди прямых, наиболее выразительных и значимых воздействий выделим следующие.
Геологические, гидрологические и гидрогеологические, геофизические, геохимические, атмосферные, биологические
Природно-техногенные последствия землетрясений сказываются на природной среде охваченного землетрясением района в результате нарушения (разрушения) искусственно созданных сооружения (объектов). Сюда можно отнести, в первую очередь, следующие:
1. Пожары на объектах антропогенной среды, ведущие к экологическим последствиям.
2. Прорыв водохранилищ с образованием водяного вала ниже плотин.
3. Разрывы нефте-, газо- и водопроводов, разлитие нефтепродуктов, утечка газа и воды.
4. Выбросы вредных химических и радиоактивных веществ в окружающую среду, вследствие повреждения производственных объектов, коммуникаций, хранилищ.
5. Нарушение надёжности и безопасного функционирования военно-промышленных и военно-оборонительных систем, спровоцированные взрывы боеприпасов.
Приведённый выше список последствий землетрясений, скорее всего, не полон, особенно в отношении отдалённых последствий, част которых нам ещё неизвестна. Но и среди перечисленных некоторые не имеют пока достаточно определённых количественных характеристик и соответственно не могут быть оценены по степени опасности и объёму причиняемого ущерба с необходимой полнотой и надёжностью.
Лучше других известны геологические признаки, для которых в настоящее время можно привести количественные характеристики в соотношении с силой землетрясений. Представление о размерах очагов (в проекции на земную поверхность) для землетрясений различной силы даёт таблица. (в данном случае таблица №2)
Таблица№2
Магнитуда |
Длина очага, км. |
Ширина очага, км. |
5,0 |
11 |
6 |
6,5 |
25 |
18 |
7,0 |
50 |
30 |
7,5 |
100 |
35 |
8,0 |
200 |
50 |
Эти величины примерно определяют и ареалы разрушительных последствий. Как видно из таблицы(№2), эти ареалы могут охватывать площади в сотни и тысячи, а при самых сильных землетрясениях –в десятки тысяч квадратных километров.
Ясно, что столь многочисленные и существенные нарушения ландшафтной среды (и, конечно, биосферы) не могут не повлечь за собой нарушения экологических условий на этих и прилегающих площадях. Наиболее значимые и легко выявляемые выражаются в уничтожении растительного покрова, местообитания животных (а подчас и их самих, равно как и людей), в нарушениях традиционных местообитаний и наземных миграционных путей, изменении водного режима, перераспределении водных запасов, ухудшении качества кормовых угодий и т.д.
Особенности сейсмических процессов, влияющих на природные системы.
Среди сейсмологических процессов, имеющих прямое отношение к воздействию на среду с вероятными экологическими последствиями, выделим следующие, лишь недавно установленные особенности процесса (периода) сейсмической активизации, то есть подготовки, реализации и затухания толчков одного землетрясения или серии землетрясений.
1. Область геофизических аномалий (поля напряжений, деформации, энергетического и магнитных полей, поля силы тяжести) и аномального протекания других процессов (гидрогеологических, атмосферных, вероятно и биоэнергетических) по своим размерам обычно на порядок превышает область очага самого землетрясения.
2. Распределение возмущений и аномалий в окружающий очаг землетрясения средах неравномерно в пространстве и времени. Пространство это выражается в приуроченности и/или более резкой выраженности аномалии к особо чувствительным зонам (узлам), которые могут располагаться на удалении до сотен километров от очага. Ход аномалии во времени также неравномерен, так что всплески (экстремумы) значений подчас того же уровня, что и при основном сейсмическом событии, могут и предшествовать ему, и следовать за ним с разными интервалами времени.
Таким образом, сейсмические проявления следует рассматривать как продолжительный процесс геофизических нарушений долговременного равновесного состояния и/или развития некоторого объёма окружающей среды (во всех сопряжённых сферах), по размерам и времени далеко превосходящих место (область) и момент (период) собственно сейсмических импульсов.
Отсюда должна быть понятна и неизмеримо большая экологическая роль сейсмических и сопутствующих им процессов по сравнению с бытующими традиционными представлениями.
В качестве примера отдалённых, но вполне реальных, хотя до сих пор не изученных последствий сильных землетрясений, рассмотрим следующие связи.
Известно, что при крупных землетрясениях нередко возникают разрывы и трещины на земной поверхности. Длина зон таких разрывов достигает при сильных землетрясениях десятков и даже сотен километров. Такие разрывы, внезапно раскрываясь (возникая), служат каналами усиленной дегазации земных недр, а нередко обеспечивают и разгрузку глубинных флюидов в артезианских бассейнах. По таким каналам выносятся к поверхности огромные массы различных химических элементов и соединений –и жизненно важных, и токсичных, в числе последних тяжёлые металлы.
Соответственно этому в таких зонах изменяются ландшафтно-геохимические и биохимические характеристики в грунтах, на поверхности и в атмосфере. В последние годы установлена важная роль глубинной дегазации Земли и форсировании озоновых дыр в стратосфере, а с содержанием озона в стратосфере тесно связывают поглощение ультрафиолетового излучения, которое, в свою очередь, воздействует на ДНК и клеточные мембраны наземных микроорганизмов, определяя жизнестойкость популяции. Гибель микроорганизмов –начального звена пищевых целей –представляет серьёзную экологическую опасность. Широко известно отрицательное воздействие ультрафиолетового облучения на фотосинтез и рост растений, на животный мир, не говоря о человек. Следовательно, изменения содержания озона над очагами сильных землетрясений могут сказываться, пусть зонально и временно, на всей биоте, нарушая биохимическое равновесие и экологические условия. К этому добавляются аномалии в поступлении тяжёлых металлов, образование аэрозолей над трещинами в земной поверхности, а также аномалии в форсировании облачного покрова и размещение его вдоль линий разломов. В количественном отношении указанные процессы и их взаимные связи пока не изучены. )