Содержание
Введение. 2
1. Светимости звезд. 4
2. Из чего состоят звезды 5
3. Лот в безднах мироздания. 8
Заключение. 13
Список литературы 15 Введение
Открылась бездна, звезд полна, Звездам числа нет, бездне — дна.
Так писал великий ученый и поэт, чуткий ценитель красоты природы Михаиле Ломоносов. Не в ущерб ему, приведем еще одно высказывание о звездах, принадлежащее, однако, менее авторитетному лицу. «Коллективный автор» Козьма Прутков изложил один анекдот о Декарте так:
«Однажды, когда ночь покрыла небеса невидимою своею епанчею, знаменитый философ Декарт, сидя на ступеньках домашней своей лестницы, некий прохожий подступил к оному, с превеликим вниманием на мрачный горизонт смотревшему, с вопросом: «Скажи, мудрец, сколько звезд на небе сем? — «Мерзавец! — ответствовал сей: — никто необъятного объять не может .»
Смысл всех этих слов тот, что звездам, видимым на небе, «несть числа», а между тем, если говорить о звездах, видимых невооруженным глазом, то они все сочтены давным-давно. Эта задача не необъятна. Мы вполне можем «объять» множественность звезд, она лишь кажется необъятной.
Присмотритесь к звездному небу, разыщите на нем с помощью звездной карты созвездия, и вы скоро убедитесь, как легко ориентироваться на небе, держать на учете все звезды, видимые невооруженным глазом. Их всего около 6000, а сразу над горизонтом их видно только около 3000. Если мы говорим «около», та лишь потому, что острота зрения и прозрачность воздуха бывают различны. В списки занесены и помечены на картах не только все эти звезды, но и множество более слабых.
С уменьшением блеска звезд число их растет, и даже простой их счет становится все более затруднительным.
Так сказать, «поштучно» сосчитаны и занесены в каталоги, а также на карты все звезды ярче 11-й звездной величины. Число звезд, более слабых, мы тоже знаем, но уже не так точно, но это и не так важно. Мы поступаем с ними, как лесничие с деревьями в лесах, не подсчитывающие каждое дерево при учете запасов леса. На небольших типовых площадках определенного размера они подсчитывают число деревьев и умножают их затем на число таких площадок, содержащихся в площади, занятой лесом. Мы поступаем со звездами подобно этому.
Итак, мы держим на строгом учете около миллиона звезд, а всего доступно нашему наблюдению около двух миллиардов звезд. Числа — внушительные, но «объять» их можно. 1. Светимости звезд
Где-то в море в ночной тьме тихо мерцает огонек, и если бывалый моряк не объяснит вам, что это, вы часто и не узнаете: то ли перед вами фонарик на носу проходящей шлюпки, то ли мощный прожектор далекого маяка. В том же положении в темную ночь находимся и мы, глядя на мерцающие звезды. Их видимый блеск зависит и от их истинной силы света, называемой светимостью, и от их расстояния до нас. Только знание расстояния до звезды позволяет подсчитать ее светимость по сравнению с Солнцем. Так, например, светимость звезды, в действительности в десять раз менее яркой, чем Солнце, выразится числом 0,1.
Истинную силу света звезды можно выразить еще и иначе, вычислив, какой звездной величины она бы нам казалась, если бы она находилась от нас на стандартном расстоянии в 32,6 светового года, т.е. на таком, что свет, несущийся со скоростью 300 000 км в секунду, прошел бы егоза это время. Десятая часть этого расстояния (т.е. расстояние в 3,26 светового года) принимается специалистами-астрономами за единицу для выражения межзвездных расстояний и называется парсеком. Ее назвали так потому, что с этого расстояния угол, под которым виден радиус земной орбиты, перпендикулярный к лучу зрения (этот угол называется параллаксом), составляет в точности одну секунду дуги. Парсек в 206 265 раз больше расстояния от Земли до Солнца, т.е. астрономической единицы, так что
1 парсек — 3,26 светового года =
= 206 265 астрономических единиц = 3,083 х 1013 км.
На стандартном расстоянии в 10 парсек, или 32,6 светового года, Солнце показалось бы нам звездой 5-й звездной величины, т. е. не особенно хорошо видимой невооруженным глазом даже в безлунную ночь. Звездная величина светила на этом стандартном расстоянии называется абсолютной звездной величиной.
Блеск звезд, как и всякого источника света, изменяется обратно пропорционально квадрату расстояния. Этот закон позволяет вычислять абсолютные звездные величины или светимости звезд, зная расстояния до них.
Когда расстояния до многих звезд стали известны, то мы смогли вычислить их светимости, т.е. смогли как бы выстроить их в одну шеренгу и сравнивать друг с другом в одинаковых условиях. Надо сознаться, что результаты оказались поразительными, поскольку раньше считали все звезды «похожими на наше Солнце». Светимости звезд оказались удивительно разнообразными. Приведем только крайние примеры светимости в мире звезд.
Одной из самых слабых является звезда № 359 по каталогу Вольфа. Она в 50 000 раз слабее Солнца и ее абсолютная величина +16,6.
На другом краю шеренги звезд стоит S Золотой Рыбы, видимая только в странах южного полушария Земли как звездочка 8-й величины. Она в миллион раз ярче Солнца, и ее абсолютная величина —10,6. Если яркость обычной свечи принять за яркость Солнца, то в сравнении с, ней 8 Золотой Рыбы будет мощным прожектором, а звезда 359 Вольфа слабее самого жалкого светляка!
Итак, звезды — это далекие солнца, но их сила света может быть совершенно иной, чем у нашего центрального светила. Менять наше Солнце на другое нужно было бы с оглядкой. От света одного мы ослепли бы, при свете другого бродили бы, как в густых сумерках. 2. Из чего состоят звезды
Различие спектров — звездных паспортов — известно давно и получило правильное объяснение в 30-х годах нашего века на основе теории ионизации газов. Было доказано, что это различие зависит в основном не от различия химического состава их атмосфер, который у всех звезд почти одинаков, а от различия их температур. Так, при сравнительно низкой температуре звезд классов К и М или солнечных пятен могут существовать стойкие химические соединения, например, окись титана. В более горячей звезде окись титана распадется на составные части — титан и кислород. В ее атмосфере атомы металлов, легко возбуждаемые и охотно поглощающие свет фотосферы, будут играть главную роль в поглощении и больше всего прояэят себя в спектре. Если звезда еще горячее, то атомы металлов ионизуются в ней и дают уже другие линии в спектре.
У еще более горячей звезды атомы металлов теряют уже не один электрон, а больше, и линии их спектра переходят в невидимую нам ультрафиолетовую часть спектра, предоставляя место для назойливого выпячивания водородных линий. Водородные атомы возбуждаются в большем числе и поглощают свет фотосферы (и производят этим темные линии в спектре) при этой более высокой температуре более интенсивно.
Химический состав атмосфер звезд и Солнца по исследованиям Рессела (США), Унзольда (Германия) и других в основном почти одинаков и близок к химическому составу земной коры не только качественно, но и количественно, за исключением того, что в земной атмосфере нет заметных количеств водорода и гелия. Число атомов разного сорта в звездных атмосферах удалось теперь определить по интенсивности производимых ими темных линий в спектре, на основе теории спектров атомов и из лабораторных опытов по определению поглощательной способности различных газов и паров. Различия в химическом составе звездных атмосфер все же есть, они проявляются, например, в различии спектров звезд классов М и N и у горячих звезд типа Вольфа — Райе.
В следующей табличке даны логарифмы среднего числа атомов в столбе атмосфер сечением 1 см2 для звезд и Солнца по сравнению с такими же, но относительными данными для Земли и метеоритов. (Надо помнить,- что различие в логарифмах на 2 соответствует различию в числах в 100 раз и т.д.)
Все эти данные не вполне точны, но мы видим, что атмосферы звезд-солнц не только состоят из тех же химических элементов, что и земная кора, но и относительное содержание каждого из них в Земле и в звездах очень сходно, за исключением того, что в звездах и Солнце водорода и гелия гораздо больше. )