Таким образом, теория Резерфорда была бессильна объяснить не только закономерности в распределении линий спектра, ни и само существование линейчатых спектров.
Датский физик Нильс Бор сформулировав в этой связи постулативное предположение. Он провозгласил, что законы микромира коренным образом отличаются от законов макромира, в то время, как модель атома Резерфорда была построена на принципиально макроскопических представлениях. На самом же деле электрон в атоме может двигаться по орбите и не излучать, но не по всякой орбите, а только по такой, длина которой соответствует целому числу длин волн де Бройля, соответствующих движущемуся электрону.
Ясно, что разным скоростям движения электрона будут соответствовать и разные радиусы орбит их движения. Если же электрон каким-то образом (скажем, под воздействием внешнего поля) перескакивает с орбиты на орбиту, то его энергия (точнее, энергия атома в целом) меняется, а разность этих энергий излучается (или поглощается) в виде кванта с частотой, определяемой согласно Планку. Расчет привел к блестящему согласию с экспериментальными результатами Бальмера. Таким образом, был установлен еще один закон микромира, позволяющий точно предсказывать поведение микросистем.
В 1913 г. Бор предложил свою теорию строения атома, в которой ему удалось с большим искусством согласовать спектральные явления с ядерной моделью атома, применив к последней так называемую квантовую теорию излучения, введенную в науку немецким ученым-физиком Планком.
Сущность теории квантов сводится к тому, что лучистая энергия испускается и поглощается не непрерывно, как принималось раньше, а отдельными малыми, но вполне определенными порциями - квантами энергии. Запас энергии излучающего тела изменяется скачками, квант за квантом; дробное число квантов тело не может ни испускать, ни поглощать. Величина кванта энергии зависит от частоты излучения: чем больше частота излучения, тем больше величина кванта. Кванты лучистой энергии называются также фотонами.
Применив квантовые представления к вращению электронов вокруг ядра, Бор положил в основу своей теории очень смелые предположения, или постулаты. Хотя эти постулаты и противоречат законам классической электродинамики, но они находят свое оправдание в тех поразительных результатах, к которым приводят, и в том полнейшем согласии, которое обнаруживается между теоретическими результатами и огромным числом экспериментальных фактов.
Постулаты Бора заключаются в следующем. Электрон может двигаться вокруг не по любым орбитам, а только по таким, которые удовлетворяют определенными условиям, вытекающим из теории квантов. Эти орбиты получили название устойчивых или квантовых орбит. Когда электрон движется по одной из возможных для него устойчивых орбит, то он не излучает. Переход же электрона с удаленной орбиты на более близкую сопровождается потерей энергии. Потерянная атомом при каждом переходе энергия превращается в один квант лучистой энергии. Частота излучаемого при этом света определяется радиусами тех двух орбит, между которыми совершается переход электрона. Чем больше расстояние от орбиты, на которой находится электрон, до той, на которую он переходит, тем больше частота излучения.
Простейшим из атомов является атом водорода, вокруг ядра которого вращается только один электрон. Исходя из приведенных постулатов, Бор рассчитал радиусы возможных орбит для этого электрона и нашел, что они относятся, как квадраты натуральных чисел: 1 : 2 ; 3 : . n. Величина n получила название главного квантового числа. Радиус ближайшей к ядру орбиты в атоме водорода равняется 0,53 ангстрема. Вычисленные отсюда частоты излучений, сопровождающих переходы электрона с одной орбиты на другую, оказались в точности совпадающими с частотами, найденными на опыте для линий водородного спектра. Тем самым была доказана правильность расчета устойчивых орбит, а вместе с тем и приложимость постулатов Бора для таких расчетов.
В дальнейшем теория Бора была распространена и на атомную структуру других элементов, хотя это и было связанно с некоторым трудностями из-за ее новизны.
Теория Бора позволила разрешить очень важный вопрос о расположении электронов в атомах различных элементов и установить зависимость свойств элементов от строения электронных оболочек их атомов. В настоящее время разработаны схемы строения атомов всех химических элементов. Однако, надо иметь ввиду, что все эти схемы есть лишь более или менее достоверные гипотезы, позволяющая объяснить многие физические и химические свойства элементов.
Как раньше уже было сказано, число электронов, вращающихся вокруг ядра атома, соответствует порядковому номеру элемента в периодической системе. Электроны расположены по слоям, т.е. каждому слою принадлежит определенное заполняющие или как бы насыщающее его число электронов. Электроны одного и того же слоя характеризуются почти одинаковым запасом энергии, т.е. находятся примерно на одинаковом энергетическом уровне. Вся оболочка атома распадается на несколько энергетических уровней. Электроны каждого следующего слоя находятся на более высоком энергетическом уровне, чем электроны предыдущего слоя. Наибольшее число электронов М, могущих находиться на данном энергетическом уровне, равно удвоенному квадрату номера слоя: N = 2n2, где n - номер слоя; N - наибольшее количество элементов.
Кроме того, установлено, что число электронов в наружном слое для всех элементов, кроме палладия, не превышает восьми, а в предпоследнем -восемнадцати. Электроны наружного слоя, как наиболее удаленные от ядра и, следовательно, наименее прочно связанные с ядром, могут отрываться от атома и присоединяться к другим атомам, входя в состав наружного слоя последних. Атомы, лишившиеся одного или нескольких электронов, становятся заряженные положительно, так как заряд ядра атома превышает сумму зарядов оставшихся электронов. Наоборот атомы, присоединившие электроны становятся заряженные отрицательно. Образующиеся таким путем заряженные частицы, называются ионами. Многие ионы в свою очередь могут терять или присоединять электроны, превращаясь при этом или в электронейтральные атомы, или в новые ионы с другим зарядом.
Теория Бора оказала огромные услуги физике и химии, подойдя, с одной стороны, к раскрытию законов спектроскопии и объяснению механизма лучеиспускания, а с другой - к выяснению структуры отдельных атомов и установлению связи между ними. Однако оставалось еще много явлений в этой области, объяснить которые теория Бора не могла.
Так, движение электронов в атомах Бор представлял как простое механическое, однако, оно является сложным и своеобразным. Это своеобразие было объяснено новой квантовой теорией.
Открытое в конце прошлого века Беккерелем, а затем исследованное Пьером и Мари Кюри, Резерфордом, Чедвиком, Ферми явление радиоактивности выявило физически сложный состав "атома", "населенный" протонами, нейтронами, нейтрино и другими элементарными частицами. Сформировалась и исторически первая стройная физическая теория микромира квантовая механика. Этот величайший переворот в физике произошел на рубеже XX века. Физики перешли границы новой, неведомой доселе области, микромир.
Удар по представлениям, ставшим привычными, оказался тем более чувствительным, что в конце XIX века даже выдающиеся физики были убеждены в том, что основные законы природы раскрыты, и остается использовать их для объяснения различных явлений и процессов.
Ведь до этого фундаментальные принципы классической механики Ньютона, электродинамики Максвелла и др. разделов физики получали все новые и новые подтверждения своей справедливости.
Никому не приходило в голову, что с уменьшением, к примеру, массы тел или увеличением их скорости законы Ньютона, давно считавшиеся чуть ли не самоочевидными, могут оказаться несостоятельными.
И вот выяснилось, что атомы подвержены разрушению. Странные свойства обнаружил электрон. Его масса вырастала со скоростью. Основная характеристика тела - масса, считавшаяся со времен Ньютона неизменной, оказалась зависящей от скорости. А ведь массу было принято рассматривать как меру количества вещества, содержащегося в теле. )