Конечно, летать такая ракета сможет только в открытом Космосе, причем подальше от Земли (сожжет все), да и имея немалую начальную скорость.
Но если она заработает – то, почти догонит луч света!
А это уже прямой путь к звездам.
Второй принцип – полевой. И если о первом знают почти все, то о втором – очень немногие.
Выражаясь доступным и простым языком, можно сказать, что это Мюнхгаузен, вытаскивающий себя и свою лошадь из болота за собственные волосы!
Для большинства землян это парадокс, но для ученых голов – обычное дело.
Так в чем же секрет полевого двигателя?
В тысяча восемьсот двадцатом году ученый, по фамилии Ампер сделал открытие, благодаря которому, в скором времени, появился электромагнит, электромотор, а после - радио, кибернетика и многое такое, что стало техническими потомками этого фундаментального открытия. Я уже не говорю о силе тока, измеряемого амперами!
Само открытие состояло в способности двух параллельных проводников притягиваться или отталкиваться, если по ним пропускали электрический ток. Выходило, что ток, пробегая по проводам, создавал магнитные поля, которые и взаимодействовали между собой. А с какой силой притягиваются магниты, знает каждый ребенок.
Вот этот принцип и решили использовать теоретики. Они поставили на тележку два параллельных провода и пустили по ним переменный ток. Провода стали притягиваться и отталкиваться, но тележка осталась стоять на месте. Точно так же и барон Мюнхгаузен, сам себя, да еще и лошадь, никогда бы из болота вытащить не смог.
Но хороший инженер, тем и отличается от фантазера барона, что, назло всему, обманывает Законы Природы, и… заставляет тележку ехать.
Ученые рассуждали так: если пропустить ток по одному проводнику, то, появившееся поле, полетит во все стороны, параллельно ему. После этого ток выключаем. Поле, механически, уже не связано с проводником, а существует само по себе. Как только оно подлетит ко второму проводнику, подаем ток на второй проводник, но в обратном направлении. Возникающие силы отталкивания, толкнут второй проводник вперед, а значит и тележку.
Поскольку скорость поля равна скорости света, то за это, очень короткое время, пока оно летит между проводниками, надо успеть выключить первый ток, потом включить и выключить второй. И повторять это часто и много, много раз. Тележка покатится с ускорением. Для увеличения времени полета поля между проводниками, на звездолете их разнесли на несколько километров, а провода заменили электроразрядниками: что-то вроде электрошока. И ракета стала разгонять саму себя, не выбрасывая в пустоту ничего «лишнего».
Фотонный и полевой ракетные двигатели, при любых к ним подходах, остаются, пока сказкой, но сказкой твердо стоящей на научной платформе.
А вот двигатель, способный управлять гравитацией, был, есть и будет не просто сказкой, а легендой, сопоставимой с жизнью на Марсе, о которой все читали, верят, но когда эту жизнь найдут - науке неизвестно.
Лектор по распространению, из «Карнавальной ночи», знал, что говорил, хотя и был пьян.
Великий путаник Эфир
Перед тем, как перейти к гравитации, поговорим об Эфире, проблему которого наука решила в 1905 году.
Не будем обращаться к древним, уж очень давно они жили, да и их понятия об Эфире были скорее сказочными, чем научными. Хотя для истории науки они имели определенное значение.
Перейдем сразу к Гюйгенсу и Ньютону. Эти два великих физика разделили свет на две составляющие. Позже это назовут дуализмом, а тогда каждый отстаивал свою теорию и не признавал другую. Весь скандал состоял в том, что Гюйгенс считал свет волнами, а Ньютон частицами. Но оба приходили к одному выводу: для распространения света необходима среда, как воздух для звука. И эту среду они назвали Эфиром.
Вынужденный уединиться в деревне после «чистки» 1815 года, проведенной наполеоновским правительством Ста дней, инженер службы мостов и дорог, раньше и не думавший заниматься физикой Френель, на досуге много и глубоко размышлял о тайнах света. Но, не имея, ни опыта, ни денег, он вынужден был обходиться весьма примитивными устройствами, что отнимало много времени и трудов для постановки даже простых экспериментов. Проведя большое количество опытов, Френель приходит к выводу, что свет это все-таки колебания, и колебания эти идут не вдоль, а поперек распространения световой волны. Но самое главное, что для этого необходимо наличие особой среды, в которой эти колебания происходят. А среда эта должна иметь свойства твердого тела по качеству не хуже лучших сортов стали. Вот так с легкой руки француза Френеля в науку вошел Эфир, удивительное вещество, поперечные колебания которого и есть свет. Предполагалось, что Эфир заполняет все мировое пространство, проникая во все прозрачные тела, которые сами по себе не участвуют в передаче света.
После недолгого ворчания, ученый мир признал незаконнорожденное дитя путейского инженера. Эфир надолго пережил своего родителя. Френель, сломленный туберкулезом, умер в тридцатидевятилетнем возрасте в полной уверенности, что Эфир существует.
Теперь поговорим о свойствах Эфира:
Эфир прозрачен, как воздух, но тверд… как камень, Эфир должен колебаться в такт со световой волной, значит его упругость в сто тысяч раз выше, чем у стали! При этом он должен обладать бестелесностью привидения. Он не препятствует движению планет. И главное, – он не проявляет себя ни в каких опытах.
Все это принудило ученых признать Эфир исключительной средой, обладающей крайне противоречивыми свойствами.
Шли годы, наука взрослела, и вот после кропотливой работы английский ученый Максвелл создал теорию, где электрические и магнитные явления были объединены в понятие электромагнитного поля, куда был включен и свет. На основании этой теории были выведены четыре очень компактных уравнения, которые сообщали, что свет это электромагнитные волны, способные распространяться в пустоте так же легко, как и в прозрачных телах. Причем из этих уравнений следовало, что эти электромагнитные волны могут существовать сами по себе.
Мало кто из физиков хотел ломать себе голову над этой безумной теорией. Обратите внимание, что и через двадцать лет после ее создания в смысл теории проникли лишь несколько физиков.
Всем хороши были уравнения. Они не содержали лишь одного – в них не было ничего относящегося к световому Эфиру и его поразительным свойствам.
Эфир просто остался за бортом теории Максвелла.
И когда через 12 лет Генрих Герц обнаружил на опыте предсказанные теорией электромагнитные волны, большинство физиков признали их, как особые натяжения Эфира, не желая отказываться от призрака Френеля.
Вот в это самое смутное время в науку вошел провинциальный юноша Генрих Лоренц. Он познакомился с теорией Максвелла случайно, обнаружив в библиотеке физической лаборатории Лейденского университета, нераспечатанный конверт со статьями английского физика.
Эти работы в Лейдене никто не читал. Большинству лейденских физиков они были не по зубам. Но юному студенту они показались откровением.
Проходит время и Лоренц приступает к написанию докторской диссертации (к тому времени, в 18 лет, он уже кандидат наук), где решает задачу об отражении и преломлении света согласно электромагнитной теории. В этой диссертации двадцатидвухлетний Лоренц с легкостью показывает, как просто решаются теорией Максвелла все загадки отражения и преломления света.
Впоследствии Лоренц, верный своей первой влюбленности, существенно развил теорию Максвелла, введя в нее наряду с электромагнитными полями атомы электрического заряда – электроны. Так в теорию Максвелла были введены элементы атомистики.
Электромагнитная теория, и ее улучшенный вариант, – электронная теория одерживали одну победу за другой. С их помощью удалось объяснить все известные в то время процессы. Более того, теория предсказывала еще не известные явления, и эти предсказания блестяще сбывались.
Сторонников Эфира было еще очень много, и они выдвинули теорию, согласно которой все, что летит сквозь Эфир, летит как сквозь воздух на поверхности Земли. Значит должны проявляться те же явления, что и в атмосфере. )