Школа № 635
Класс 9 «Б»
Александра Сергеевна Груздева
Д о к л а д
Происхождение Солнечной системы
Москва 2004
Вот уже более двух веков проблема происхождения Солнечной системы волнует выдающихся мыслителей нашей планеты. Этой проблемой занималась, начиная от философа Канта и математика Лапласа, плеяда астрономов и физиков XIX и XX столетий. Ей отдал дань наш замечательный соотечественник, человек разносторонне талантливый, Отто Юльевич Шмидт. И все же человечество еще очень далеко от ее решения. Какие только тайны не были вырваны у природы за эти прошедшие два столетия! За последние десятилетия XX века существенно прояснился вопрос о путях эволюции звезд. И хотя детали удивительного процесса рождения звезды из газопылевой туманности еще далеко не ясны, ученые теперь четко представляют, что с ней происходит на протяжении миллиардов лет дальнейшей эволюции. Увы, вопрос о происхождении и эволюции планетной системы, окружающей наше Солнце, далеко не так ясен.
На первый взгляд кажется странным и даже парадоксальным, что астрономы смогли узнать о космических объектах, весьма удаленных и наблюдаемых с большими трудностями, гораздо больше, чем о планетах и Солнце, которые (по астрономическим масштабам, разумеется) находятся у нас «под боком». Однако в этом нет ничего удивительного. Дело в том, что астрономы наблюдают огромное количество звезд, находящихся на разных стадиях эволюции. Изучая звезды в скоплениях, они могут чисто эмпирически установить, как зависит темп эволюции звезд от начальных условий, например массы. Если бы не было этого обширного эмпирического материала, вопрос об эволюции звезд был бы предметом более или менее бесплодных спекуляций, как это и было примерно до 1950 г.
В совершенно другом положении находятся исследователи происхождения и эволюции нашей планетной системы. Ведь мы пока не можем непосредственно наблюдать такие системы даже около самых близких звезд. Если бы это удалось, и мы имели реальное представление, как выглядят планетные системы на разных этапах своей эволюции или хотя бы как сильно отличаются одни планетные системы от других, эта волнующая проблема была бы, несомненно, решена в сравнительно короткие сроки. Но пока мы наблюдаем планетную систему, так сказать, в единственном экземпляре. Более того, необходимо еще доказать, что около других звезд имеются планетные системы. Ученые уже пытались это сделать, но не реально, а пользуясь наблюдаемыми характеристиками звезд (не планет!). Даже о собственной планетной системе астрономы знают далеко не все. Совсем недавно прозвучала информация, что обнаружена (только-только!) десятая планета нашей Солнечной системы.
Значит ли это, что мы еще решительно ничего не можем сказать о происхождении Солнечной системы, кроме тривиального утверждения, что она как-то образовалась не позже, чем 5 млрд. лет назад, потому что таков приблизительно возраст Солнца? Такая пессимистическая точка зрения так же мало обоснована, как и излишний оптимизм адептов той или иной космогонической гипотезы. Можно сказать, что кое-что о происхождении семьи планет, обращающихся вокруг Солнца, мы уже знаем. Во всяком случае, круг возможных гипотез о происхождении Солнечной системы сейчас значительно сузился.
Переходя к изложению (по необходимости весьма краткому) различных космогонических гипотез, сменявших одна другую на протяжении последних двух столетий, мы начнем с гипотезы, впервые высказанной великим немецким философом Кантом и спустя несколько десятилетий независимо предложенной замечательным французским математиком Лапласом. Из дальнейшего будет видно, что существенные предпосылки этой классической гипотезы выдержали испытание временем, и сейчас в самых модернистских космогонических гипотезах мы легко можем найти основные идеи гипотезы Канта – Лапласа.
Точки зрения Канта и Лапласа в ряде важных вопросов резко отличались. Кант, например, исходил из эволюционного развития холодной пылевой туманности, в ходе которого сперва возникло центральное массивное тело – будущее Солнце, а потом уже планеты, в то время как Лаплас считал первоначальную туманность газовой и очень горячей, находящейся в состоянии быстрого вращения. Сжимаясь под действием силы всемирного тяготения, туманность, вследствие закона сохранения момента количества движения, вращалась все быстрее и быстрее. Из-за больших центробежных сил, возникающих при быстром вращении в экваториальном поясе, от него последовательно отделялись кольца. В дальнейшем эти кольца конденсировались, образуя планеты.
Таким образом, согласно гипотезе Лапласа, планеты образовались раньше Солнца. Однако, несмотря на такое резкое различие между двумя гипотезами, общей их важнейшей особенностью является представление, что Солнечная система возникла в результате закономерного развития туманности. Поэтому и принято называть эту концепцию «гипотезой Канта – Лапласа».
Уже в середине XIX столетия стало ясно, что эта гипотеза сталкивается с фундаментальной трудностью. Дело в том, что наша планетная система, состоящая из девяти (по последним данным из десяти) планет весьма разных размеров и массы, обладает одной замечательной особенностью. Речь идет о необычном распределении момента количества движения Солнечной системы между центральным телом – Солнцем и планетами.
Момент количества движения есть одна из важнейших характеристик всякой изолированной от внешнего мира механической системы. Именно как такую систему мы можем рассматривать Солнце и окружающую его семью планет. Момент количества движения может быть определен как «запас вращения» системы. Это вращение складывается из орбитального движения планет и вращения вокруг своих осей Солнца и планет.
Математически «орбитальный» момент количества движения планеты относительно центра масс системы (весьма близкого к центру Солнца) определяется как произведение массы планеты на ее скорость и на расстояние до центра вращения, т.е. Солнца. В случае вращающегося сферического тела, которое мы будем считать твердым, момент количества движения относительно оси, проходящей через его центр, равен 0,4 MVR, где M – масса тела, V – его экваториальная скорость, R – радиус. Хотя суммарная масса всех планет составляет всего лишь 1/700 солнечной, учитывая, с одной стороны, большие расстояния от Солнца до планет и с другой – малую скорость вращения Солнца (скорость вращения Солнца на его экваторе составляет всего лишь 2 км/с, что в 15 раз меньше скорости Земли на орбите), мы получим путем простых вычислений, что 98% всего момента количества движения Солнечной системы связано с орбитальным движением планет и только 2% – с вращением Солнца вокруг оси. Момент количества движения, связанный с вращением планет вокруг своих осей, оказывается пренебрежимо малым из-за сравнительно малых масс планет и их радиусов.
Найдем, например, момент количества движения Юпитера I. Масса Юпитера равна M = 2 x 1030 г (т.е. 10-3 массы Солнца), расстояние от Юпитера до Солнца R = 7,8 x 1013 см (или 5,2 астрономических единиц), а орбитальная скорость V = 1,3 x 106 см/с (около 13 км/с). Отсюда I = MVR = 190 x 1048. Значения моментов даны в системе единиц CGS. В этих единицах момент количества движения вращающегося Солнца равен всего лишь 6 x 1048. Таким образом, все планеты земной группы – Меркурий, Венера, Земля и Марс – имеют суммарный момент в 380 раз меньший, чем Юпитер. Львиная доля момента количества движения Солнечной системы сосредоточена в орбитальном движении планет-гигантов Юпитера и Сатурна.
С точки зрения гипотезы Лапласа, это совершенно непонятно. В самом деле, в эпоху, когда от первоначальной, быстро вращающейся туманности отделялось кольцо, слои туманности, из которых впоследствии сконденсировалось Солнце, имели (на единицу массы) примерно такой же момент, как вещество отделившегося кольца, т.к. угловые скорости кольца и оставшихся частей были почти одинаковы. Т.к. масса кольца была значительно меньше массы основной части туманности (протосолнца), то полный момент количества движения у кольца должен быть много меньше, чем у протосолнца. В гипотезе Лапласа отсутствует какой бы то ни было механизм передачи момента от протосолнца к кольцу. Поэтому в течение всей дальнейшей эволюции момент количества движения протосолнца, а затем и Солнца должен быть значительно больше, чем у колец и образовавшихся из них планет. Но этот вывод находится в разительном противоречии с фактическим распределением момента количества движения между Солнцем и планетами. )