Атмосферные осадки, проникая в грунт, превращаются либо в парообразную, либо в гигроскопическую влагу, удерживающуюся в виде молекул на частицах грунта молекулярными силами, либо в пленочную, поверх молекулярной, либо в гравитационную, свободно перемещающуюся в грунте под действием сил тяжести. Гравитационная влага может доходить до грунтовой воды и, сливаясь с ней, повышать ее уровень.
Грунтовая вода, в свою очередь, вследствие капиллярного поднятия перемещается вверх на значительную высоту и обводняет верхние слои грунта. В некоторых условиях капиллярная и грунтовая воды могут сливаться и устойчиво обводнять подземные части сооружений, в результате чего усиливается коррозия конструкций, снижается прочность оснований.
Изменение минералогического состава грунтовых вод меняет их агрессивность по отношению к подземным частям сооружений. В районах с большим количеством осадков (в северных) уровень грунтовых вод поднимается и снижается их карбонатная жесткость (в результате разбавления осадками); это усиливает способность вод к выщелачиванию извести в бетонных конструкциях. В засушливых районах, наоборот, из-за большого испарения влаги повышается концентрация минеральных солей в воде, что вызывает кристаллизационное разрушение бетонных конструкций.
Испарение из грунтов влаги и их увлажнение приводят к движению в грунтах воздуха (кислорода), что также повышает их коррозионную активность.
Существует много разновидностей агрессивности грунтовых вод. Из них чаще всего выделяют общекислотную, выщелачивающую, сульфатную, магнезиальную и углекислотную в зависимости от наличия в воде соответствующих примесей и их концентрации, указанных в СНиП 11.28—76.
Воздействие отрицательной температуры. Некоторые конструкции, например цокольные части, находятся в зоне переменного увлажнения и периодического замораживания. Отрицательная температура (если она ниже расчетной или не приняты специальные меры для защиты конструкций от увлажнения), приводящая к замерзанию влаги в конструкциях и грунтах оснований, разрушающе действует на здания.
При замерзании воды в порах материала объем ее увеличивается, что создает внутренние напряжения, которые все возрастают вследствие сжатия массы самого материала под влиянием охлаждения. Давление льда в замкнутых порах весьма велико — до 20 Па. Разрушение конструкций в результате замораживания происходит только при полном (критическом) влагосодержании, насыщении материала.
Вода начинает замерзать у поверхности конструкций, а поэтому разрушение их под воздействием отрицательной температуры начинается с поверхности, особенно с углов и ребер. Максимальный объем льда получается при температуре —22°С, когда вся вода превращается в лед. Интенсивность замерзания влаги зависит от объема пор. Так, если вода в больших порах начинает переходить в лед при
0°С, то в капиллярах она замерзает только при —17°С.
Самым устойчивым к замораживанию является материал с однородными и равномерными порами, наименее устойчивым— с крупными порами, соединенными тонкими капиллярами, так как перераспределение в них влаги затруднено.
Напряжение в конструкциях зависит не только от температуры охлаждения, но и от скорости замерзания и числа переходов через 0 °С; оно тем сильнее, чем быстрее происходит замораживание.
Камни и бетоны с пористостью до 15 % выдерживают 100—300 циклов замораживания. Уменьшение пористости, а следовательно, и количества влаги повышает морозостойкость конструкций.
Из сказанного следует, что при замерзании разрушаются те конструкции, которые увлажняются. Защитить конструкции от разрушения при отрицательных температурах — это прежде всего защитить их от увлажнения.
Промерзание грунтов в основаниях опасно для зданий, построенных на глинистых и пылеватых грунтах, мелко- и средне-зернистых песках, в которых вода по капиллярам и порам поднимается над уровнем грунтовых вод и находится в связанном виде. Связанная вода замерзает не сразу и по мере замерзания перемещается из зон толстых оболочек в зоны с оболочками меньшей толщины; это объясняется подсасыванием воды из нижних слоев в зону замерзающего грунта.
Промерзание и выпучивание грунтов опасны только для наземных сооружений, поскольку уже на глубине примерно 1,5 м от поверхности нет разницы в колебаниях дневной и ночной температур, а на глубине 10—30 м не ощущается изменение зимних и летних температур.
Вода в грунте основания независимо от того, является ли она поверхностной, грунтовой или капиллярной, всегда создает опасность промерзания грунта из-за повышения его теплопроводности при увлажнении.
Повреждения зданий из-за промерзания и выпучивания оснований могут произойти после многих лет эксплуатации, если будут допущены срезка грунта вокруг них, увлажнение оснований и действие факторов, способствующих их промерзанию.
Воздействие технологических процессов. Каждое здание и сооружение проектируется и строится с учетом воздействия предусматриваемых в нем процессов; однако из-за неодинаковой стойкости и долговечности материалов конструкций и различного влияния на них среды износ их неравномерен. В первую очередь разрушаются защитные покрытия стен и полы, окна, двери, кровля, затем стены, каркас и фундаменты. Сжатые элементы и элементы больших сечений, работающие при статических нагрузках, изнашиваются медленнее, чем изгибаемые и растянутые тонкостенные, которые работают при динамической нагрузке, в условиях высокой влажности и высокой температуры.
Кислотостойкими являются породы с большим содержанием кремния (кварц, гранит, диабаз), нестойки к кислотам породы, содержащие известь (доломит, известняк, мрамор); последние являются щелочестойкими.
Обожженный кирпич стоек даже в среднекислой и средне-щелочной средах. Для него опасны плавиковая кислота и раствор едкого натра, он разрушается также при солевой коррозии.
Сухой бетон морозостоек, однако пересыхание его при температуре выше 60—80 °С приводит к обезвоживанию, прекращению гидратации, усадке, температурным деформациям. Предварительно-напряженный железобетон теряет свои прочностные качества уже при температуре выше 80 °С в результате снижения напряжения в арматуре.
Минеральные масла химически неактивны по отношению к бетонам, но в то же время отрицательно на них воздействуют, так как их поверхностное натяжение в два-три раза меньше, чем у воды, а поэтому они обладают большей смачивающей способностью и большей силой капиллярного поднятия: масло, попавшее на бетон, глубоко проникает в него, расклинивая частицы, изолируя зерна цемента от влаги и прекращая тем самым их дальнейшую гидратацию. Относительное снижение прочности бетона под действием пролитого масла тем значительнее, чем выше водоцементное отношение (В/Ц): с увеличением пористости бетона возрастает его насыщенность растворами, в том числе и маслами.
Износ конструкций под действием истирания — абразивный износ полов, стен, углов колонн, ступеней лестниц и других конструкций—бывает весьма интенсивным и поэтому сильно влияющим на их долговечность. Он происходит под действием как природных сил (ветров, песчаных бурь), так и вследствие технологических и функциональных процессов, например из-за интенсивного перемещения больших людских потоков в зданиях общественного назначения.
Состояние производственных сооружений с агрессивными средами во многом зависит от культуры самого производства, т. е. от того, как герметизированы технологические линии, предотвращены ли агрессивные выделения в помещения, усилена ли вентиляция, как быстро смываются промышленные стоки. Для поддержания таких сооружений в исправном состоянии важна также культура их технической эксплуатации: чем выше агрессивность среды в сооружении, тем чаще должны проводиться обследования и возможно быстрее восстанавливаться конструкции, начавшие разрушаться.
2.2 Физический износ и моральное старение
Износ, или старение,— это потеря сооружениями ещё элементами первоначальных эксплуатационных качеств. Такой процесс неизбежен, и задача состоит в недопущении ускоренного, преждевременного износа, в своевременной замене, усилении конструкций и оборудования с малыми сроками службы. Различают физический износ и моральное старение. )