В ядрышке не обнаруживается ДНК, но все же при исследовании фиксированных клеток вокруг ядрышка всегда выделяется зона хроматина. Этот околоядрышковый хроматин, по данным электронной микроскопии, представляется, как интегральная часть сложной структуры ядрышка.

Ядрышко - одно из самых активных мест в клетке по включению предшественников в РНК. Ядрышковая РНК является предшественником цитоплазматической РНК.

Цитоплазматическая РНК синтезируется в ядрышке.

РНК ядрышек

Оценивая общее содержание в ядрышковых фракциях белков, РНК и ДНК, можно видеть, что на долю РНК приходится около 10% всей массы ядрышка.

Содержание РНК, ДНК и белка в изолированных ядрышках (сухой вес в %)

Объект

РНК

ДНК

Белок

РНК/ДНК

Печень крысы

11,0

8,0

78,0

1,4

Регенерирующая печень (6 ч)

7,6

4,6

87,8

1,7

Регенерирующая печень (18 ч)

15,5

5,4

79,1

2,9

Печень морской свинки

4,1

9,5

86,4

0,43

Стебель гороха (4 дня)

15,11

10,6

74,0

1,5

Проростки гороха (36 ч)

16,7

6,4

76,9

2,6

Так как основную массу цитоплазматической РНК составляет рибосомная РНК, то можно сказать, что ядрышковая РНК принадлежит к этому классу.

Подтверждением представлений того, что именно ядрышко является местом синтеза рРНК и образования рибосом, послужило то, что из ядрышковых препаратов были выделены РНП-частицы, которые как по составу РНК (по седиментационным свойствам), так и по размеру можно охарактиризовать как рибосомы или их предшественники с различными коэффициентами седиментации.

ДНК ядрышек

Биохимическими исследованиями обнаружено в выделенных ядрышках определенное количество ДНК, которую можно отождествить с околоядрышковым хроматином или с ядрышковыми организаторами хромосом. Содержание ДНК в выделенных ядрышках - 5-12% от сухого веса и 6-17% от всей ДНК ядра.

ДНК ядрышкового организатора - это та самая ДНК, на которой происходит синтез ядрышковой, т.е. рибосомной, РНК.

Таким образом из биохимических работ появились представления о том, что в ядрышке на ДНК локализованы многочисленные одинаковые гены для синтеза рРНК. Синтез рРНК идет путем образования огромного предшественника и дальнейшего его превращения (созревания) в более короткие молекулы РНК для большой и малой субъедениц рибосом.

Изучая ядрышки ооцитов тритонов, исследователи столкнулись с интересным явлением - сверхчисленностью ядрышек. У X. laevis во время роста ооцита появляется до 1000 мелких ядрышек, не связанных с хромосомами. Именно эти ядрышки выделил О.Миллер. вместе с этим на ядро ооцита увеличивается количество рДНК. Это явление получило название амплификации. Оно заключается в том, что происходит сверхрепликация зоны ядрышкового организатора, многочисленные копии отходят от хромосом и становятся дополнительно работающими ядрышками. Такой процесс необходим для накопления огромного (1012) количества рибосом на яйцевую клетку, что обеспечит в будущем развитие эмбриона на ранних стадиях даже при отсутствии синтеза новых рибосом. Сверхчисленные ядрышки после созревания яйцевой клетки исчезают.

Ультраструктура ядрышек

При изучении большого числа различных клеток животных и растений отмечена волокнистая или сетчатая структура ядрышек, заключенная в более или менее плотную диффузную массу. Были предложены названия для этих частей: волокнистая часть - нуклеонема и диффузная, гомогенная часть - аморфное вещество, или аморфная часть. Сделанные почти одновременно с этим электронно-микроскопичес-кие исследования также выявили волокнисто-нитчатое строение ядрышек.

Однако такое нитчатое строение ядрышка не всегда четко выражено. У некоторых клеток отдельные нити нуклеонем сливаются, и ядрышки могут быть совершенно однородными.

При более пристальном изучении ядрышка можно заметить, что основные структурные компоненты ядрышка - плотные гранулы диаметром около 15 нм и тонкие фибриллы толщиной 4-8 нм. Во многих случаях (ооциты рыб и амфибий, меристематические клетки растений) фибриллярный компонент собран в плотную центральную зону (сердцевина), лишенную гранул, а гранулы занимают переферическую зону ядрышка. В ряде случаев (например, клетки корешков растений) в этой гранулярной зоне не наблюдается никакой дополнительной структуризации.

Было найдено, что аморфные участки ядрышек неоднородны. В их структуре выявляются малоокрашенные зоны - фибриллярные центры - и окружающие их более темные участки, тоже имеющие фибриллярное строение.

Кроме этих двух компонентов ядрышек в последнее время большое внимание уделялось строению околоядрышкового хроматина. Этот хроматин и внутриядрышковая сеть ДНК являются единой системой и представляют собой интегральный компонент ядрышка.

Гранулы и фибриллярная часть состоят из рибонуклеопротеидов.

Показано, что именно светлые фибриллярные центры содержат рДНК.

Судьба ядрышка при делении клеток

Известно, что ядрышко исчезает в профазе и появляется вновь в средней телофазе.

По мере затухания синтеза рРНК в средней профазе происходит разрыхление ядрышка и выход готовых рибосом в кариоплазму, а затем и в цитоплазму. При конденсации профазных хромосом фибриллярный компонент ядрышка и часть гранул тесно ассоциируют с их поверхностью, образуя основу матрикса митотических хромосом. Этот фибриллярно-гранулярный материал, синтезированный до митоза, переносится хромосомами в дочерние клетки.

В ранней телофазе по мере деконденсации хромосом происходит высвобождение компонентов матрикса. Его фибриллярная часть начинает собираться в мелкие многочисленные ассоциаты - предъядрышки, которые могут объединяться друг с другом. По мере возобновления синтеза РНК предъядрышки претерпевают перестройку, что выражается в появлении в их структуре гранул РНК, а затем в становлении дефинитивной формы нормально функционирующего ядрышка.

Роль ядра.

Ядро осуществляет две группы общих функций: одну, связанную собственно с хранением генетической информации, другую - с ее реализацией, с обеспечением синтеза белка.

В первую группу входят процессы, связанные с поддержанием наследственной информации в виде неизменной структуры ДНК. Эти процессы связаны с наличием так называемых репарационных ферментов, ликвидирующих спонтанные повреждения молекулы ДНК (разрыв одной из цепей ДНК, часть радиационных повреждений), что сохраняет строение молекул ДНК практически неизменным в ряду поколений клеток или организмов. Далее, в ядре происходит воспроизведение или редупликация молекул ДНК, что дает возможность двум клеткам получить совершенно одинаковые и в качественном и в количественном смысле объемы генетической информации. В ядрах происходят процессы изменения и рекомбинации генетического материала, что наблюдается во время мейоза (кроссинговер). Наконец, ядра непосредственно участвуют в процессах распределения молекул ДНК при делении клеток. )