- 2 - белками. Многие из перефирерических белков связаны нековалентными взаимодействиями с трансмембранными белками, но есть и такие, ко- торые имеют ковалентную связь с молекулами липидов. Большинство мембранных белков, так же как и липидов, способ- ны свободно перемещаться в плоскости мембраны. Вообще говоря, возможен переход молекул белков и липидов с одной стороны мембра- ны на другую, известный как "флип-флоп" перескок, но он происхо- дит гораздо реже, чем латеральная диффузия (рис. 1.3.). Известно, что одна молекула липида совершает "флип-флоп" раз в две недели, в то время, как та же молекула диффундирует в плоскости липидного слоя за 1 секунду на расстояние равное длине большой бактериаль- ной клетки. 1.3. На поверхности всех клеток имеются углеводы. Это поли- сахаридные и олигосахаридные цепи, ковалентно присоединенные к мембранным белкам и липидам. Углеводы всегда распологаются на той стороне мембраны, которая не контактирует с цитозолем. То есть, на внешних (плазматических) мембранах они присоединяются снаружи клетки. Функция углеводов клеточной поверхности пока неизвестна, но представляется вероятным, что некоторые из них принимают участие в процессах межклеточного узнавания. 2. ПЕРЕНОС МАЛЫХ МОЛЕКУЛ ЧЕРЕЗ МЕМБРАНУ Так как внутренняя часть липидного слоя гидрофобна, он представляет собой практически непроницаемый барьер для большинс- тва полярных молекул. Вследствие наличия этого барьера, предотв- ращается утечка содержимого клеток, однако из-за этого клетка бы- ла вынуждена создать специальные механизмы для транспорта раство- римых в воде веществ через мембрану. Перенос малых водораствори- мых молекул осуществляется при помощи специальных транспортных белков. Это особые трансмембранные белки, каждый из которых отве- чает за транспорт определенных молекул или групп родственных мо- лекул. В клетках существуют также механизмы переноса через мемб- рану макромолекул (белков) и даже крупных частиц. Но к ним мы вернемся позднее.
- 3 - 2.1. При опытах с искусственными липидными бислоями было ус- тановлено, что чем меньше молекула и чем меньше она образует во- дородных связей, тем быстрее она дифундирует через мембрану (рис. 2.1.). Итак, чем меньше молекула и чем более она жирорастворима (гидрофобна или неполярна), тем быстрее она будет проникать через мембрану. Малые неполярные молекулы легко растворимы и быстро диффун- дируют. Незаряженные полярные молекулы при небольших размерах также растворимы и диффундируют. Важно, что вода очень быстро проникает через липидный бислой несмотря на то, что она относи- тельно нерастворима в жирах. Это происходит из-за того, что ее молекула мала и электрически нейтральна. Итак, мембраны могут пропускать воду и неполярные молекулы за счет простой диффузии. Но клетке необходимо обеспечить транспортировку таких ве- ществ как сахара, аминокислоты, нуклеотиды, а также многих других полярных молекул. Как уже говорилось, за перенос подобных веществ ответственны специальные мембранные транспортные белки. Каждый из них предназ- начен для определенного класса молекул а иногда и для определен- ной разновидности молекул. Первые доказательства спецефичности транспортных белков были получены, когда обнаружилось, что мута- ции в одном гене у бактерий приводят к потере способности транс- портировать определенные сахара через плазматическую мембрану. У человека есть болезнь цистинурия, при которой отсутствует способ- ность транспортировать некоторые аминокислоты, в частности цис- тин, из мочи или кишечника в кровь, - в результате в почках обра- зуются цистиновые камни. Все изученные транспортные белки являются трансмембранными белками, полипептидная цепь которых пересекает липидный бислой несколько раз. Все они обеспечивают перенос молекул через мембра- ну, формируя в ней сквозные проходы. В основном, транспортные белки делятся на белки-переносчики и каналообразующие белки. Пер- вые взаимодействуют с молекулой переносимого вещества и каким-ли- бо способом перемещают ее сквозь мембрану. Каналообразующие бел- ки, напротив, формируют в мембране водные поры, через которые (когда они открыты) могут проходить вещества (обычно неорганичес- кие ионы подходящего размера и заряда).
- 4 - 2.2. Если молекула не заряжена, то направление ее диффузии определяется разностью концентраций по обеим сторонам мембраны или градиентом концентрации. В то же время на направление движе- ния заряженной молекулы будет влиять еще и разность потенциалов на сторонах мемраны или мембранный потенциал (обычно внутренняя сторона мембраны заряжена отрицательно относительно наружной). Учитывая концентрационный и электрический градиенты Все каналооб- разующие белки и многие белки-переносчики позволяют растворенным веществам проходить через мембраны только пассивно, то есть, в направлении электрохимического градиента. Такой вид транспорта называется пассивным (облегченная диффузия), и не требует затрат энергии. 2.3. Рассмотрим подробнее работу белка переносчика, обеспе- чивающего пассивный транспорт веществ через клеточную мембрану. Процесс, с помощью которого белки-переносчики связывают и транс- портируют растворенные молекулы, напоминает ферментативную реак- цию. В белках-переносчиках всех типов имеются участки связывания для транспортируемой молекулы. Когда белок насыщен, скорость транспортировки максимальна. Связывание может быть блокируемо как конкурентными ингибиторами, (конкурирующими за тот же участок связывания), так и не конкурентными ингибиторами, связывающимися в другом месте и влияющими на структуру переносчика. Молекулярный механизм работы белков переносчиков пока не известен. Предполага- ется, что они переносят молекулы, претерпевая обратимые конформа- ционные изменения, которые позволяют их участкам связывания рас- полагаться попеременно то на одной, то на другой стороне мембраны (рис. 2.2.). На данной схеме представлена модель, показывающая, как конформационные изменения в белке могли бы обеспечить облег- ченную диффузию растворенного вещества. Белок переносчик может состоять в двух конформационных состояниях "пинг" и "понг". Пере- ход между ними осуществляется случайным образом и полностью обра- тим. Однако, вероятность связывания молекулы транспортируемого вещества с белком гораздо выше в состоянии "пинг". Поэтому моле- кул, перемещенных в клетку, будет гораздо больше чем тех, которые ее покинут. Происходит транспорт вещества по электрохимическому градиенту. )