Гольдшмидта. Лишь значительно позднее были разработаны полные системы радиусов ионов, в которых выдерживается брэгговское соотношение Rk>Ro. Они предложены в разных модификациях А. Слейтером, А. С. Щукаревым, В. И. Лебедевым. По В. И. Лебедеву, например, радиус О2- составляет 0.045 нм, радиус Mg2+ - 0.160 нм. При этом предполагается, что в большинстве кристаллических веществ плотнейшую упаковку образуют катионы, а в пустотах между ними располагаются ионы кислорода и другие анионы. Сейчас идет активная переоценка разных представлений о размерах ионов в кристаллических постройках минералов. Например, А. С. Поваренных считал, что в разных по своей природе химических соединениях атомы одного и того же элемента должны иметь различные радиусы. Размер иона Fe3+ в сульфидах составляет 0.111 нм, во фторидах 0.086 нм, в оксидах - 0.094. Эти представления подтверждаются многими работами по электронно- и рентгенографии минералов. Так для Na, к примеру, установлены колебания радиуса от 0.109 до 0.131 нм. Представления о неодинаковых размеров ионов в разных веществах, очевидно, наиболее прогрессивны, но они еще не нашли должного развития, поэтому далее будут использоваться значения радиусов по В. М. Гольдшмидту. Принцип плотнейшей упаковки атомов и ионов. Для объяснения природы кристаллических структур веществ в кристаллографии используется принцип плотнейшей упаковки атомов и ионов в кристаллах, согласно которого принимается, что во-первых, форма всех атомов и ионов сферическая и, во-вторых, весь объем кристалла или отдельных его структурных блоков заполнен плотно соприкасающимися атомами и ионами. На основе этого принципа удалось просто и геометрически образно охарактеризовать многие особенности кристаллического строения минералов. Рассмотрим для начала возможные способы плотнейшей укладки шаров равного диаметра. Положим друг на друга два слоя плотно соприкасающихся шаров, обозначив нижний слой буквой А, верхний - В. Третий слой можно положить на слой В по-разному. В одном случае точно так же, как слой А, в другом - шары третьего слоя займут неповторяемую позицию С, их затем можно перекрыть четвертым слоем шаров, который повторит положение слоя А. Упаковка первого типа характеризуется повторяемостью АВ АВ АВ . Её называют двуслойной (а по характеру симметрии - гексагональной) . Для упаковок второго типа характерна повторяемость АВС АВС АВС . Ее называют трехслойной *(кубической) . Имеется много других порядков повторяемости слоев в плотнейшей укладке шаров, но все они будут являться комбинациями первых двух упаковок. Плотно уложенные шары занимают лишь 74% заполняемого ими объема, а 26% приходится на пустоты между шарами. Их два типа. Одни пустоты, меньшие по размеру, располагаются между четырьмя шарами. Их называют тетраэдрическими. Другие, большие по размеру пустоты ограничены шестью шарами - октаэдрические. В бесконечной кристаллической постройке на n шаров приходится 2n тетраэдрических и n октаэдрических пустот. Примером построения кристаллической структуры вещества почти точно по принципу плотнейшей упаковки может являться корунд Al2O3. В нем крупные ионы кислорода (радиус 0.132 нм по В. Гольдшмидту) образуют двуслойную плотнейшую упаковку, 2/3 октаэдрических пустот занято ионами Al (радиус 0.057 нм, по В. Гольдшмидту) , тетраэдрические позиции свободны. Если считать кристаллические вещества построенными по принципу идеальной плотнейшей упаковки, все многообразие структур минералов должно определяться тремя факторами: 1) типом плотнейшей упаковки, размером и валентностью атомов, образующих эту упаковку; 2) набором атомов, заполняющих плотнейшей упаковки; 3) узором заселения пустот. Многообразие сочетаний этих факторов очевидно. Однако число минералов с идеальной плотнейшей упаковкой атомов относительно невелико. Это объясняется в первую очередь тем, что такие кристаллические постройки возможны для минералов с направленными химическими связями - металлической или ионной. Действительно, к примеру, самородные металлы (Au, Cu, Ag) имеют структуры с трехслойной (кубической) плотнейшей упаковкой, самородные иридий и цинк - с двухслойной (гексагональной) упаковкой. Напротив, кристаллическая структура самородной серы далека от плотнейшей упаковки. В сере проявлены направленные - ковалентные химические связи, при этом образуются восьмиатомные сложные по конфигурации молекулы с нулевым суммарным зарядом S80, они соединяются остаточными (вандерваальсовыми) связями в разноориентированные колонки. Из распространенных в природе веществ плотнейшая упаковка характерна для немногих минералов - например для корунда Al2O3 и шпинели MgAl2O4. Показательно, что при малых молекулярных количествах этих веществ они обладают относительно повышенной плотностью. Довольно близки к плотнейшей упаковке структуры некоторых ортосиликатов - оливинов, гранатов и др. Большинство же минералов имеет сложные кристаллические постройки, в них лишь строение отдельных блоков отвечает принципу плотнейшей упаковки атомов. Этот принцип - лишь модель, помогающая интерпретировать реальность. Изоморфизм. Типы изоморфизма. Изоморфизм - свойство атомов (или ионов) одних веществ заменять в структуре атомы (или ионы) других. Явления изоморфизма очень широко распространены в минералах. Так, химический состав минерала вольфрамита отображается формулой (Fe, Mn) [WO4]. Он представляет собой изоморфную смесь, где атомы марганца замещают в структуре атомы железа, и наоборот, формально это может быть выражено формулой nFe[WO4] X (100-n) X Mn[WO4]. Крайние члены этого ряда носят название ферберита Fe[WO4] и гюбнерита Mn[WO4]. Минерал оливин (Mg, Fe) 2[SiO4] также представляет собой изоморфную смесь, где атомы магния в структуре замещаются атомами железа. Формально это может быть выражено формулой nMg2[SiO4]X(100-n) Fe2[SiO4]. Конечные члены этого непрерывного ряда носят названия форстерита и фаялита. Наряду с простыми случаями может происходить сложное изоморфное замещение целых комплексов в кристаллических структурах. Классическим примером такого сложного замещения являются минералы из группы полевых шпатов - плагиоклазы. Плагиоклазы представляют собой непрерывный ряд минералов, где пара Ca2+ и Al3+ замещаются на пару Na+ и Si4+(CaAl«NaSi) . Крайние члены этого ряда называются анортитом Ca[Al2Si2O8] и альбитом Na[AlSi3O8]. В соответствии с изменением состава изменяются и физические свойства плагиоклазов, например оптические свойства, плотность и др. Таким образом, различаются два главных вида изоморфизма: более простой, когда взаимозамещаются ионы, имеющие одинаковую валентность, - он называется изовалентным изоморфизмом, и сложный, когда происходит замещение ионов разных валентностей, гетеровалентный изоморфизм. По степени совершенства изоморфных замещений можно выделить два случая. В первом случае замещение одного элемента другим может быть в пределах до 100% это совершенный, или полный, изоморфизм. Во втором случае замещение может быть частичным от сотых долей, до нескольких процентов это несовершенный, или ограниченный, изоморфизм. Многие изоморфные примеси не отражаются формулой минерала, ибо количество их невелико. Так, в цинковых обманках ZnS обычно присутствует в виде изоморфной примеси Fe, а иногда Cd и In. Если происходит изоморфное замещение одних элементов (или комплексов) другими, то они берутся в скобки и отделяются друг от друга запятой, причём порядок написания зависит от количества этих элементов (или компонентов) . В чём же причина изоморфизма? В. М. Гольдшмит указал, что элементы могут замещать друг друга в структурах в том случае, когда радиусы ионов (или атомов) являются близкими и разница их не превышает 15%. Однако, если величины радиусов ионов близки, это ещё не предопределяет их изоморфного замещения. Понятие о ионных шарах, как несжимаемых шарах, верно лишь в первом приближении. Напряжение электрического поля, заряд и типы ионов приводят к такому взаимодействию между ними, когда правильная шарообразная форма иона искажается, происходит поляризация (деформация) электронной оболочки ион )