ритмов, как это сделано в аппарате "Мустанг-БИО" (Россия) . Применение полупроводниковых лазеров обеспечивает малые габариты и удобство пользователя [5]. Специализация некоторых аппарататов выводит на первый план совсем другие требования, чем универсальность, которая не всегда является исключительно необходимой. В какой-то степени, это уже показано на примере автономных аппаратов. В 1982-1989 гг. появились сообщения об эффективности применения внутривенного облучения крови (ВЛОК) для лечения больных стенокардией и острым инфарктом миокарда. Методика нашла применение во многих других областях медицины. Возникла необходимость аппаратурного обеспечения. Долгое время для этих целей успешно применялся аппарат АЛОК, в котором стоял He-Ne лазер с l =0,633 мкм и мощностью 2,5 мВт. Теперь им на смену приходят аппараты, применяющие ППЛ с близкой длиной волны излучения. Фирмой "Техника" разработан, успешно прошел технические и клинические испытания АЛТ "МУЛАТ", который предназначен в основном для ВЛОК (максимальная мощность излучения 4,5 мВт) . Анализ литературных данных позволяет сделать следующие выводы о перспективах развития аппаратуры для НИЛТ: 1. Производство универсальных аппаратов, построенных по блочному принципу (базовый блок - излучающая головка - насадка) и позволяющих с минимальными затратами перепрофилировать их для лечения различных заболеваний. 2. Производство узкоспециализированных комплексов, сочетающих, как правило, несколько способов воздействия на организм человека. Такие комплексы, оснащенные мощным методическим сопровождением, позволяют максимально эффективно реализовать возможности физической медицины при лечении одного-двух заболеваний. Примером этого направления приборостроения могут служить также аппараты для внутривенного облучения крови, специализированные по способу воздействия. 3. Производство малогабаритных, автономных, исключительно простых в обращении и максимально безопасных аппаратов, предназначенных для самостоятельного использования их пациентами по назначению и под наблюдением лечащего врача. Такие АЛТ также могут быть полезны в ряде случаев и врачам. 4. Разработка и повсеместное внедрение методик НИЛТ, основанных на воздействии несколькими длинами волн монохроматического излучения (синяя, зеленая, красная и инфракрасная) . Реализовать это в малогабаритном и универсальном аппарате позволяют полупроводниковые лазеры с соответствующими длинами волн излучения. Появляется возможность воздействия всеми длинами волн одновременно или в любой комбинации различными излучателями. 5. Замена непрерывных лазеров на генерирующие наносекундные импульсы пиковой мощностью 1-10 Вт и имеющие среднюю мощность на 2-3 порядка меньше, чем у применяемых сегодня непрерывных лазеров. Опять же единственно возможными источниками излучения в данном случае могут выступать только полупроводниковые инжекционные импульсные лазеры с различными длинами волн излучения. 6. Реализация многочастотного режима модуляции лазерного излучения всей иерархией эндогенных ритмов конкретного пациента (или максимально возможным набором) , охватывая диапазон от онтогенеза (10-10 Гц) до частот оптического диапазона электромагнитных волн (1014 Гц) , которыми и осуществляется воздействие. Другими словами, чтобы получить максимальный эффект, надо учитывать и возраст пациента и варьировать различными длинами волн излучения. Между этими крайними точками частотной иерархии организации жизни есть множество характерных диапазонов, успешно изучаемых сегодня и которые надо учитывать при многочастотном режиме воздействия НИЛИ. гЮЙКЧВЕМХЕ лШ ОНОШРЮКХЯЭ ДНЯРЮРНВМН МЕЦКСАНЙН ХЯЯКЕДНБЮРЭ НВЕМЭ ЬХПНЙСЧ НАКЮЯРЭ ЯНБПЕЛЕММНИ ЛЕДХЖХМШ - ОПХЛЕМЕМХЕ КЮГЕПМНЦН ХГКСВЕМХЪ ДКЪ БНЯЯРЮМНБКЕМХЪ ГДНПНБЭЪ ВЕКНБЕЙЮ. вРН С МЮЯ ОНКСВХКНЯЭ, ЯСДХРЕ ЯЮЛХ. бЯЕ БШЬЕНОХЯЮМНЕ - АЕГСЯКНБМН, ЯОКНЬМЮЪ ЙНЛОХКЪЖХЪ. мН ЛШ Х МЕ ОПЕРЕМДСЕЛ МЮ ЮБРНПЯРБН ОН ХГКНФЕММШЛ ЛЮРЕПХЮКЮЛ Х ОПХМНЯХЛ ЦКСАНВЮИЬХЕ АКЮЦНДЮПМНЯРХ ЮБРНПЮЛ, ЯОХЯНЙ ЙНРНПШУ ОПЕДЯРЮБКЕМ МХФЕ, ГЮ ОНГМЮБЮРЕКЭМШИ ЛЮРЕПХЮК, ОНЛНЦЬХИ МЮЛ УНРЭ МЕЛМНЦН ГЮЦКЪМСРЭ Б ЩРНР СДХБХРЕКЭМШИ ЛХП - КЮГЕПМСЧ РЕПЮОХЧ. Литература: 1. Байбеков И. М., Касымов А. Х., Козлов В. И. и др. Морфологические основы низкоинтенсивной лазеротерапии. - Ташкент: Изд-во им. Ибн Сины, 1991. - 223с. 2. Буйлин В. А. Низкоинтенсивная лазерная терапия с применением матричных импульсных лазеров. - М., ТОО "Фирма"Техника", 1996. - 118с. 3. ГОСТ Р 50723-94 Лазерная безопасность. Общие требования безопасности при разработке и эксплуатации лазерных изделий. - М.: Издательство стандартов, 1995. - 34с. 4. Грибковский В. П. Полупроводниковые лазеры: - Мн.: Университетское, 1988. - 304с. 5. Гримблатов В. М. Современная аппаратура и проблемы низкоинтенсивной лазерной терапии // Применение лазеров в биологии и медицине (Сборник) . - Киев, 1996, С. 123-127. 6. Инюшин В. М. Лазерный свет и живой организм. - Алма-Ата, 1970. - 46с. 7. Инюшин В. М., Чекуров П. Р. Биостимуляция лучом лазера и биоплазма. - Алма-Ата, "Казахстан", 1975. - 120с. 8. Кейси Х., Паниш М. Лазеры на гетероструктурах. - М., т. 2., 1981. - 364с. 9. Москвин С. В., Радаев А. А., Ручкин М. М. и др. Новые возможности портативных лазерных терапевтических аппаратов "Мотылек" // VII Межд. науч. -практ. конф. "Применение лазеров в медицине и биологии". Ялта, Украина, 1996. - С. 111-113. 10. Москвин С. В. Лазерная терапия, как современный этап развития гелиотерапии (исторический аспект) // Лазерная медицина. - 1997. Т. 1. вып. 1. - С. 45-49. 11. Прохончуков А. А., Жижина Н. А. Лазеры в стоматологии / Лазеры в клинической медицине. Руководство для врачей // Под ред. С. Д. Плетнева. - М : Медицина, 1996. - С. 283-303. 12. Справочник по лазерам / Под ред. А. М. Прохорова, пер. с англ. - т. 1-2, М., 1978. 13. Справочник по лазерной технике: Пер. с нем. - М.: Энергоатомиздат, 1991.544с. 14. Титов М. Н., Москвин С. В. Фирма "Техника"- разработчик лазерной медицинской аппаратуры // Лазер-маркет, (3-4) 1993. - С. 18-19. 15. Электроника: Энциклопедический словарь. - М.: Сов. энциклопедия, 1991. - 688с. 16. Федоров Б. Ф. Лазеры. Основы устройства и применение. - М.: ДОСААФ, 1988.190с. 17. McKibbin L., Downie R. Treatment of Post Herpetic Neuralgia using a 904nm (infrared) Low Incident Energy Laser: a Clinical Study // LLLT for Postherpetic Neuralgia, 1991. - pp. 35-39. 18. OE Reports, /155 / November, 1996. 19. Titov M. N., Moskvin S. V. and Priezzhev A. V. - Optimization of the parameters of biostimulator "Mustang" in respect to the light scattering properties of the tissues // Paper # 2086-22 presented at SPIE`s Symposium "Biomedical Optics Europe`93", Budapest, Hungary, 1993. СОВРЕМЕННЫЕ ИСТОЧНИКИ ИЗЛУЧЕНИЯ И АППАРАТУРА ДЛЯ НИЗКОИНТЕНСИВНОЙ ЛАЗЕРНОЙ ТЕРАПИИ С незапямятных времен Солнце воспринималось как источник света, тепла и жизни. Использование естественного света в лечебных целях вероятно также старо, как само человечество. Солнечный свет и вода всегда были для человека максимально близкими и доступными лечебными средствами. Дошедшее до нас первое упоминание об осознанном использовании солнечных лучей в профилактических и лечебных целях относится к временам правления в Египте фараона Аменхотепа IV (предположительно с 1375 по 1358 годы до н.э.) . О целебных свойствах Солнца есть сообщения в трудах: Геродота, Гиппократа, Аулия Корнелия Цельса, Клавдия Галена, Абу Али ибн Сины и др. Можно сказать, что Солнце - первый источник излучения в фототерапии, который имеет широкий спектральный диапазон, нестабильную мощность излучения, нестабильную степень поляризации. В конце прошлого века появились искусственные источники света, которые имели более узкий спектральный диапазон, стабильную мощность излучения, благодаря чему получили значительно более выраженный и устойчивый лечебный эффект, чем при солнцелечении. К тому же стало возможным проведение исследований явлений фотобиоактивации с появлением более контролируемого средства воздействия. В первую очередь усп )