3.Расчет оборудования и проектирование отделения.
3.1 Технико-экономическое обоснование выбора основного, дополнительного и вспомогательного оборудования.
Основное оборудование- это оборудование на котором выполняются основные операции термической обработки: печи, агрегаты с различными источниками тепла, установки для прямого нагрева током, оборудование для закалки.
Дополнительное оборудование служит для выполнения операций обработки: травильные баки, моечные машины, дробеструйные аппараты, оборудование для контроля продукции, сварочное оборудование.
Вспомогательное оборудование служит для получения контролируемых атмосфер.
Теплоэнергетическое силовое оборудование: двигатели, вентиляторы, компрессоры, насосы холодильные установки, трубопроводы, электросеть.[6]
Подъемно-транспортное оборудование включает в себя следующие виды краны и подъемники всех типов, конвейеры, транспортеры, электро-и мотокары, механизмы загрузки и разгрузи.
Применение в качестве основного оборудования агрегата непрерывного отжига, работающему по непрерывному режиму, более рационально, так как это увеличивает выпуск готовой продукции, повышает производительность агрегата, ускоряет процесс обезуглероживания, уменьшает расход тепла и потери металла. Поэтому в термических отделениях целесообразно строить и применять оборудование непрерывного действия.
В отделении непрерывного отжига в качестве источника тепла применяют электроэнергию. Это позволяет осуществлять тепловой режим термической обработки с точностью ±5%. Кроме того электрические термические печи имеют регулируемый тепловой режим. Срок службы электрических печей более длительный. Значительно облегчено обслуживание печи, так как отсутствует система боровов, труб, а также высокая культура производства и гигиены труда.[6]
3.2 Расчет электрических и нагревательных элементов.
Источником тепла в печи являются электронагреватели. Общая установочная мощность электронагревателей составляет 6600 кВт.
Мощность одного электронагревателя 240 кВт: РНОМ=240 кВт
Так как мощность печи превышает 15 кВт, то печь конструируют трехфазной. Мощность одной фазы определяется по формуле:
РФ=РН/3=240/3=80 кВт (1)
Фазовое напряжение на концах нагревателя:
U=U/3=380/3=220В (2)
Сила тока проходящего через нагреватель
I=103РФ/UФ=10 *80/220=363.6 А (3)
Сопротивление электронагревателей
Рф=Uф/103 Pф=2202/103*80=0.6 Ом (4)
Выбираем ленточный электронагреватель. Нагревательные элементы должны обеспечивать бесперебойную длительную службу при заданном тепловом режиме.[7]
Поэтому необходимо выбирать материал в зависимости от максимальной температуры нагрева и характера среды.
По таблице 4[7] выбираем материал Х20Н80Т3.
Толщина ленты определяется по следующей формуле
а=103Р2фr/2m(m+1)U2фn, (5)
Где r=1,31 Ом мм2/м удельное сопротивление материала (таблица 4 [2])
n=0,7 Вт/см2-удельная поверхностная мощность нагревателя.
M=8 -12-отношение ширины ленты к ее толщине, выбираем m=12
А=1058021,31/2*12(12+1)*22020,7=3,4 мм (6)
По таблице 6 [9] принимаем максимальное значение а=3,2мм.
Длина нагревателя
L1=Rab/r=0.6*3.2*38.4/1.31=56.26 (7)
Длина трех нагревателей
Lобщ=l1*3=56.26*3=168.84 м (8)
Масса трех нагревателей
G=a*b*lобщg103, где (9)
g=8,4г/см3-плотность (табл.4[2])
G=3.2*38.4*168.84*8.4*10-3=174.28
кг
Проверяем поверхностную нагрузку
n=50*Рф /(а+b)*l1=50*80/(3.2+38.4)56.28=0.7 (10)
Сравнивая поверхностную нагрузку, рассчитанную с допустимой (таб.2[9]) видно что она находится в пределах допустимой.
Ленточные элементы сопротивления располагаются обычно зигзагом на стенках, своде и поде печи.[9]
Расстояние внутри зигзагов Р принимаем 17 мм. Высоту зигзагов принимаем равной 200 мм., тогда А=183 мм.
Р - расстояние внутри зигзагов.
В - высота зигзага.
А - высота зигзага между центрами закругленной ленты.
И - шаг зигзага
Длина одного зигзага:
Lзигзага=2p*Р+2А, мм. (11)
Lзигзага=2p*17+2*183=419 мм.
Число зигзагов
N=(1*103-2вывода)/Lзиг., (12)
Где Lвывод=с+100, мм.
С - толщина стенки печи (с=375 мм.)
N=(127.4*103-2(375+100))/419=302
Шаг зигзага И=34 мм.
Длина нагревательного элемента свернутого зигзагом L:
L=И*n*10-3, м.
L=34*302*10-3=10.268 м.
3.3 Тепловой расчет термоагрегата
Тепловой расчет термической печи сводится к определению расхода тепла, мощности печи коэффициента полезного действия[10]
Расход тепла определяется по формуле Qрасх=Qме+Qкл+Qн. п, (13) где Qме - тепло идущее на нагрев металла
Qкл-тепло теряемое в окружающее пространство через кладку печи (свод, стена, под)
Q нп - прочие не учтенные потери.
Тепло идущее на нагрев металла
Qме=G(c2tк-c1tн), (14)
где G-производительность печи,
А tк tн-начальная и конечная температура металла
С1,с2-удельные теплоемкости соответственно t н, tк
G=m/tнагр, (15)
Где m-масса металла находящегося в камере нагрева
tнагр-время нагрева
m=V*r, (16)
где V-объем металла находящегося в камере нагрева;
r=7,8 кг/м3-плотность металла;
V=а*b*l, (17)
Где а-толщина полосы;
b-ширина полосы;
l-длина камеры нагрева.
V=0,5*1065*3350=878387,50 мм3=0,0178 м3
M=0,0178*7,8=0,1388=138,8 кг
Время нагрева определяется как одна минута на миллиметр сечения.
tнагр.=1*0,5=0,5 мин=30 сек.
Производительность печи:
G=138.6/30=4.63 кг/сек.
Тепло идущее на нагрев металла:
QMe=4,63*[0.653(800+273)*0.47(20+273)]=2607 кВт
С1=0,47 кДж/кг*К, при t=200C;
C2=0.653 кДж/кг*К, при t=8000C
Тепло теряемое в окружающее пространство через кладку печи[8]:
Qкл=Qст+Qпод+Qсвод, (17)
Где Qст-потери тепла через стены,
Qпод-потери тепла через под,
Qсвод-потери тепла через свод.
2. Свод печи
tк=tг
Рис.4 Схема трехслойного свода печи
1)Диатомит не обожженный в кусках l=0,11+0,232*10-3t,Вт/(м*к)
2)Шамот легковесный ШЛ-0,4;
l=0.1+0.00021t, Вт/(м*К) (18)
3) Асбестовый картон
l=0,12+0,00024t,Вт/(м*К)
2 Стены
Рис.5 Схема трехслойной плоской стенки печи.
Шамот легковесный ШЛ-0,9
l=0,29+0,00023t, Вт/(м*К);
Шамот легковесный ШЛ-0,4
l=0,1+0,00021t Вт/(м*К);
Асбестовый картон
l=0,12+0,00024t, Вт/(м*К)
3 Под
Рис.6 Схема трехслойного пода печи.
1)Диатомит необожженный в кусках
l=0,11+0,000232t,Вт/(м*К)
2)Шамот легковесный ШЛ-0,4
l=0,1+0,00021t, Вт/(м*К)
3)Асбестовый картон
l=0,12+0,00024t, Вт/(м*К);
Исходные данные для расчета потерь через кладку[10]:
1.Температура внутренней поверхности стенки tк, равной температуре печи, 0С.
2. Температура окружающего воздуха в термическом отделении tв,0С.
3. Температура на границе первого и второго слоя кладки t1,0С.
4. Температура на границе второго и третьего слоя кладки t2,0С.
5. Температура наружней поверхности стенки t3,0С.
6.Толщина слоев:
внутренний-S1 ;
средний-S2;
наружний-S3;
7.Коэффициент теплопроводности слоев при 00С-l1, l2, l3 ,Вт/(м*к)
8.Коэффициент температурного измерения теплопроводности слоев -В1 В2, В3, Вт/(м*с)
Расчет плотности теплового потока методом последовательного приближения и температур t1, t2, t3 на границах слоев кладки выполняем на микро-ЭВМ ” электроника-МК61” по программе.
1. Свод: t1 =5060C; t2=3000C; t3=550C; q1=331 Вт/м2.
2. Стены: t1=5990C; t2=3220C; t3=590C; q2=362 Вт/м2.
3. Под: t1=5050C; t2=2790C; t3=530C; q3=304 Вт/м2.
Потери тепла через свод:
Qсв=qсв*Fсв*10-3; (18)
Fcв=L*B=192*9=1728 м2; (19)
Qсв=331*1728*10-3=571.9 кВт.
Потери тепла через стены:
Qст=qст*Fст*10-3; (20)
Fст=2LH=2*192*8.5=3264м2; (21)
Qст=362*3264*10-3=1181,6 кВт. (22)
Потери тепла через под принимаем 0,75Qcт.
Qпод=0,75Qcт=1181.6*0.75=886.2кВт; (23)
Qкл=Qме+Qcв+Qпод=1181.6+571.9+886.2=2639.7 кВт.
Неучтенные потери принимаем 10% от Qкл. )