Радиоастрономия

РАДИОАСТРОНОМИЯ

Ва

1 . Зарождение радиоастрономии.

ВаВаВаВаВаВаВаВа Декабрь 1931 года .. В одной из армейских лабораторий ее сотрудник Карл Янский изучает атмосферные помехи радиоприему. Нормальный ход радиопередачи на волне 14,7 м нарушен шумами, интенсивность которых не остается постоянной

ВаВаВаВаВаВаВаВаВаВаВа Постепенно выясняется загадочная периодичность тАФ каждые 23 часа 56 минут помехи становятся особенно сильными. И так изо дня в день, из месяца в месяц

ВаВаВаВаВаВаВаВаВаВаВа Впрочем, загадка быстро находит свое решение. Странный период в точности равен продолжительности звездных суток в единицах солнечного времени. Через каждые 23 часа 56 минут по обычным часам, отсчитывающим солнечное время, земной шар совершает полный оборот вокруг своей оси, и все звезды снова возвращаются в первоначальное положение относительно горизонта любого пункта Земли

ВаВаВаВаВаВаВаВаВаВаВа Отсюда Янский делает естественный вывод: досадные помехи имеют космическое происхождение. Какая-то таинственная космическая ВлрадиостанцияВ» раз в сутки занимает такое положение на небе, что ее радиопередача достигает наибольшей интенсивности

ВаВаВаВаВаВаВаВаВаВаВа Янский пытается отыскать объект, вызывающий радиопомехи. И, несмотря на совершенство радиоаппаратуры, виновник найден. Радиоволны исходят из созвездия Стрельца, того самого, в направлении которого находится ядро нашей звездной системы тАФ Галактики

ВаВаВаВаВаВаВаВаВаВаВа Так родилась радиоастрономия тАФ одна из наиболее увлекательных отраслей современной астрономии

ВаВаВаВаВаВаВаВаВаВаВа Первые пятнадцать лет радиоастрономия почти не развивалась. Многим было еще не ясно, принесут ли радио методы какую-нибудь существенную пользу астрономии

Разразившаяся вторая мировая война привела к стремительному росту радиотехники

Радиолокаторы были приняты на вооружении всех армий. Их совершенствовали, всячески стремились повысить чувствительность, вовсе не предполагая, конечно, использовать радиолокаторы для исследования небесных тел

ВаВаВаВаВаВаВаВаВаВаВа Советские ученые академики Л. И. Мандельштам и Н. Д. Папалекси теоретически обосновали возможность радиолокации Луны еще в 1943 году

ВаВаВаВаВаВаВаВаВаВаВа Это было первое радиоастрономическое исследование в Советском Союзе

Два года спустя ( в 1946 году ) оно было осуществлено сначала в США, а затем в Венгрии. Радиоволны, посланные человеком, достигли Луны и, отразившись от нее, вернулись на Землю, где были уловлены чувствительным радиоприемником

ВаВаВаВаВаВаВаВаВаВаВа Последующие десятилетия тАФ это период необыкновенно быстрого прогресса радиоастрономии. Его можно назвать триумфальным, так как ежегодно радиоволны приносят из космоса удивительные сведения о природе небесных тел

ВаВаВаВаВаВаВаВаВаВаВа Радиоастрономия использует сейчас самые чувствительные приемные устройства и самые большие антенные системы. Радиотелескопы проникли в такие глубины космоса, которые пока остаются не досягаемыми для обычных оптических телескопов. Радиоастрономия стала неотъемлемой частью современного естествознания. Перед человечеством раскрылся радио космос тАФ картина Вселенной в радиоволнах

ВаВаВаВаВаВаВаВаВаВаВа Каждая наука изучает определенные явления природы, используя свои методы и средства. Для радиоастрономии объектом изучения служит весь необъятный космос, все бесчисленное множество небесных тел. Правда, это изучение несколько одностороннее тАФ оно ведется лишь посредством радиоволн. Но и в таком ВлразрезеВ» Вселенная оказывается бесконечно многообразной, неисчерпаемой для исследователя

ВаВаВаВаВаВаВаВаВаВаВа Мы живем в мире волн. Любое тело, будь то книга, ваше тело или звезда, излучает энергию в форме электромагнитных волн. Человеческий глаз чувствителен далеко не ко всем из них. Лишь ничтожная доля электромагнитных волн, попадая на сетчатку глаза, вызывает ощущение света. Но и этой доли оказывается достаточно, чтобы наполнить земной шар сиянием солнечного света и гаммой всевозможных красок. Быть может, наша ограниченность в восприятии электромагнитных волн есть благодетельная забота о нас самой природы. Ведь если бы человек воспринимал все излучения, существующие в природе, не был ли бы он подавлен их бесконечным многообразием?

ВаВаВаВаВаВаВаВаВаВаВа Как бы там ни было, но человеческому глазу доступны лишь те электромагнитные волны, длина которых заключена в пределах от 400 до 760 миллимикрон. Разлагая трехгранной стеклянной призмой белый луч на составные части, мы получаем спектр тАФ радужную полоску, в которой представлены все цвета, доступные глазу

ВаВаВаВаВаВаВаВаВаВаВа Хорошо известно, что по обе стороны видимого спектра располагаются области невидимых излучений. Таковы ультрафиолетовые лучи с длиной волны меньше 400 миллимикрон. Они обнаруживают свое существование по-разному. В жаркий солнечный день некоторые из них вызывают загар на нашей коже. Те же лучи сильно воздействуют на эмульсию обычных фотопластинок, оставляя на ней хорошо видимые следы. К ультрафиолетовым лучам примыкают рентгеновы Ва лучи, широко применяемые в медицине. Наиболее коротковолновые из известных излучений, так называемые гамма лучи, выделяются при радиоактивном распаде. Их энергия весьма велика и они очень опасны тАФ мощное гамма-излучение может породить мучительные явление лучевой болезни

ВаВаВаВаВаВаВаВаВаВаВа За красной границей видимого спектра лежит область невидимых инфракрасных лучей. Некоторые из них, с длиной волны значительно меньшей одного сантиметра, способны заметно нагреть наше тело, и потому их иногда называют тепловыми лучами. Когда вы подносите руку к раскаленному утюгу и на каком-то расстоянии чувствуете его тепло, в этот момент ваша рука подвергается именно этих инфракрасных, ВлтепловыхВ» лучей

ВаВаВаВаВаВаВаВаВаВаВа За инфракрасными лучами следуют радиоволны. Их длины измеряются миллиметрами, сантиметрами, дециметрами и метрами

ВаВаВаВаВаВаВаВаВаВаВа Несмотря на количественные и качественные различия, перечисленные излучения тАФ от гамма-лучей до радиоволн тАФ обладают одним общим свойством: все они имеют общую природу, являются электромагнитными волнами

ВаВаВаВаВаВаВаВаВаВаВа Благодаря общности природы всем электромагнитным волнам свойственны, например, такие процессы. Как одинаковая скорость распространения, отражение, и преломление, поглощение и рассеивание. Радиоволны, как и лучи видимого света, могут складываться друг с другом, то есть, говоря языком физики, интерферировать

В некоторых случаях можно наблюдать дифракцию радиоволн, или ВлогибаниеВ» ими предметов, размеры которых сравнимы с их длиной

ВаВаВаВаВаВаВаВаВаВаВа Замечательно, что всякое нагретое тело излучает электромагнитные волны всевозможных длин. Отложив по горизонтальной оси графика длины волн, а по вертикальной оси величины, характеризующие интенсивность излучения, то есть излучаемой энергии для данной длины волны, можно получить, как говорят физики, распределение энергии по спектру данного тела

ВаВаВаВаВаВаВаВаВаВаВа Для Солнца максимум кривой распределения энергии по спектру лежит в области желтых лучей. И действительно, удаленное от Земли на расстояние звезд наше Солнце казалось бы желтенькой. Желтый цвет Солнца обычно не заметен только из-за ослепительной яркости дневного светила

ВаВаВаВаВаВаВаВаВаВаВа В области инфракрасных лучей кривая распределения энергии по спектру постепенно приближается к горизонтальной оси, теоретически говоря, нигде ее не пересекая. Это значит, что всякое нагретое тело в какой-то степени излучает и радиоволны. Договоримся излучение радиоволн, вызванное нагретостью тела, называть тепловым радиоизлучением

ВаВаВаВаВаВаВаВаВаВаВа Как видите, радиоволны далеко не всегда имеют искусственное происхождение

Скорее наоборот тАФ естественных радиостанций несравненно больше, чем тех, которые созданы руками человека. Строго говоря, любое тело может рассматриваться как естественная радиостанция, пусть ничтожной мощности

ВаВаВаВаВаВаВаВаВаВаВа Вам, конечно, случалось наблюдать досадные помехи на экране телевизора. Где-то рядом проезжает троллейбус или автобус, и сразу изображение портится тАФ по экрану бегут какие-то белые полоски. И в этом случае виновник тАФ естественные радиоволны. Их породили искровые разряды на концах токоприемников троллейбуса или в щетках генератора автомашины. ВлНепрошеныеВ» радиоволны вмешались в передачу, испортили настройку телевизора и вызвали помехи

ВаВаВаВаВаВаВаВаВаВаВа Каждая электрическая искра тАФ это естественная ВлрадиостанцияВ»

ВаВаВаВаВаВаВаВаВаВаВа Электрические разряды всегда порождают радиоволны. Как известно, первый радиоприемник А. С. Попова был ВлгрозоотметчикомВ» тАФ он улавливал волны, порождаемые молнией

ВаВаВаВаВаВаВаВаВаВаВа Есть, однако, существенное отличие радиоволн, излучаемых электрической искрой и радиоизлучением, например, нагретого утюга

ВаВаВаВаВаВаВаВаВаВаВа Радиоизлучение искры вызвано не только нагретостью раскаленного воздуха, но и другими, более сложными процессами. В таких случаях говоря не о тепловом радиоизлучении. Как мы увидим в дальнейшем, нетепловое радиоизлучение может возникнуть, например, при торможении сверхбыстрых электронов под действием магнитных сил

ВаВаВаВаВаВаВаВаВаВаВа Казалось бы, обилие всевозможных радио излучений позволяет изучать Вселенную в любом диапазоне радиоволн. Но, к сожалению, этому препятствует атмосфера

2.Прозрачна ли атмосфера?

ВаВаВаВаВаВаВаВаВаВаВа Трудно поверить, что воздух почти не прозрачен, что до наших глаз доходит лишь ничтожная доля всех излучений, существующих в природе

ВаВаВаВаВаВаВаВаВаВаВа Взгляните на рисунок 1. Он иллюстрирует прозрачность земной атмосферы для электромагнитных волн различных длин. Гладкая горизонтальная часть кривой, совпадающая с горизонтальной осью графика, отмечает те излучения, для которых земная атмосфера совершенно не прозрачна. Два ВлгорбаВ» кривой, один узкий, другой широкий, соответствуют двум Влокнам прозрачностиВ» в земной атмосфере

ВаВаВаВаВаВаВаВаВаВаВа Левое из них лежит в основном в области видимых лучей тАФ от ультрафиолетовых до инфракрасных. К сожалению, атмосфера Земли совершенно не прозрачна для лучей, длина волны которых меньше 290 миллимикрон. Между тем в далеких ультрафиолетовых областях спектра расположены спектральные линии многих химических элементов. Мы их не видим, и поэтому наши сведения о химическом составе небесных тел далеко не полны

ВаВаВаВаВаВаВаВаВаВаВа

рис.1 Прозрачность земной атмосферы

Ва

В последнее время астрономы пытаются вырваться за границы воздушной оболочки Земли и увидеть космос, в Влчистом видеВ». И это им удается. Высотные ракеты и воздушные шары выносят спектрографы и другие приборы в верхние, весьма разряженные слои атмосферы, и там автоматически фотографируют спектр Солнца

ВаВаВаВаВаВаВаВаВаВаВа Начато изучение этим способом и других астрономических объектов

ВаВаВаВаВаВаВаВаВаВаВа Другой край Влоптического окнаВ» атмосферы упирается в область спектра с длиной волны около микрона. Инфракрасные лучи с большей длиной волны сильно поглощаются Ва главным образом водяными парами земной атмосферы

ВаВаВаВаВаВаВаВаВаВаВа Много тысячелетий астрономы изучали Вселенную только через одно узкое Влоптическое окноВ» атмосферы. Они не подозревали, что есть еще одно ВлокноВ», гораздо более широкое. Оно лежит в области радиоволн

ВаВаВаВаВаВаВаВаВаВаВа Левый край Влрадио окнаВ» отмечен ультракороткими радиоволнами длиной 1,25 см , правый край радиоволнами длиной около 30 м

ВаВаВаВаВаВаВаВаВаВаВа Радиоволны, длина которых меньше 1,25 см (кроме волн длиной около 8 мм ), поглощаются молекулами кислорода и водяных паров. От них есть непрерывный переход к тем электромагнитным волнам, которыми мы называем инфракрасными

ВаВаВаВаВаВаВаВаВаВаВа Радиоволны, длина которых больше 30 м , поглощаются особым верхним слоем атмосферы, носящим название ионосферы. Как показывает само название, ионосфера состоит из ионизированных газов, то есть таких газов, атомы которых лишены части своих электронов (которые так же входят в ионосферу)

ВаВаВаВаВаВаВаВаВаВаВа Для некоторых радиоволн слой ионизированного газа подобен зеркалу тАФ радиоволны отражаются от него как солнечный луч от поверхности воды. Поэтому приходящие волны больше 30 м почти полностью отражаются от ионосферы. Для них Земля является Влблестящим шарикомВ» (как для солнечных лучей блестящий игрушечный елочный шар), и пробить ионосферу они не в состоянии

ВаВаВаВаВаВаВаВаВаВаВа ВлРадио окноВ» гораздо шире Влоптического окнаВ». На рисунке 1 по горизонтальной оси отложена так называемая логарифмическая шкала длин, то есть единицы масштаба вдоль этой оси есть единицы степени числа 10. Если же иметь дело с числами, а не с их логарифмами, то ширина Влрадио окнаВ» (около 30 м ) получится почти в десять миллионов раз больше ширины Влоптического окнаВ». Таким образом, Влоптическое окноВ» скорее следует считать чрезвычайно узкой щелью, и можно только удивляться, что исследуя Вселенную через такую ВлщельВ», мы знаем о ней очень многое

ВаВаВаВаВаВаВаВаВаВаВа Естественно ожидать, широко распахнутое в космос Влрадио окноВ» покажет нам Вселенную еще более многообразной и сложной

ВаВаВаВаВаВаВаВаВаВаВа Если излучение небесного тела по длине волны подходит для Влрадио окнаВ», оно практически беспрепятственно достигает земной поверхности, и задача астрономов состоит в том, чтобы уловить и исследовать каким-то способом это излучение

ВаВаВаВаВаВаВаВаВаВаВа Для этого и созданы радиотелескопы

3.Радиотелескопы и рефлекторы.

ВаВаВаВаВаВаВаВаВаВаВа Вспомним, как устроен телескоп-рефлектор. Лучи, посылаемые небесным телом, попадают на вогнутое параболическое зеркало и, отражаясь от его поверхности, собирается в фокусе рефлектора. Здесь получается изображение небесного тела, которое рассматривается через сильную лупу тАФ окуляр телескопа. Маленькое второе зеркало, отражающее лучи в сторону окуляра, имеет чисто конструктивное, а не принципиальное значение

ВаВаВаВаВаВаВаВаВаВаВа Роль главного зеркала здесь достаточно ясна. Оно создает изображение небесного тела, и это изображение будет наилучшим в том случае, когда небесное тело находится на продолжении оптической оси телескопа. Телескоп в таком случае направлен прямо на наблюдаемый объект

ВаВаВаВаВаВаВаВаВаВаВа Приемником излучения в телескопе-рефлекторе служит человеческий глаз или фотопластинка. Чтобы увеличить угол зрения и подробно рассмотреть изображение светила, приходиться пользоваться промежуточным устройством тАФ окуляром

ВаВаВаВаВаВаВаВаВаВаВа Итак, в телескопе-рефлекторе есть собиратель излучения тАФ параболическое зеркало и приемник излучения тАФ глаз наблюдателя или фотопластинка

ВаВаВаВаВаВаВаВаВаВаВа По такой же схеме устроен, в сущности, и простейший радиотелескоп (рис.2). В нем космические радиоволны собирает металлическое зеркало, иногда сплошное, а иногда решетчатое

Ва

ВаВаВаВаВаВаВаВаВаВаВа

ВаВаВаВаВаВаВа рис.2 Схема устройства радиотелескопа

Форма зеркала радиотелескопа, как и в рефлекторе, параболическая. Конечно и здесь сходство не случайное тАФ только параболическая (или, точнее, параболоидная) поверхность способна собрать в фокусе падающее на нее электромагнитное излучение

ВаВаВаВаВаВаВаВаВаВаВа Если бы глаз мог воспринимать радиоволны, устройство радиотелескопа могло бы быть неотличимым от устройства телескопа-рефлектора. На самом деле приемником радиоволн в радиотелескопах служит не человеческий глаз или фотопластинка, а высокочувствительный радиоприемник

ВаВаВаВаВаВаВаВаВаВаВа Зеркало концентрирует радиоволны на маленькой дипольной антенне, облучая ее. Вот почему эта антенна в радиотелескопах получила название облучателя

ВаВаВаВаВаВаВаВаВаВаВа Радиоволны, как и всякое излучение, несут в себе некоторую энергию. Поэтому, падая на облучатель, они возбуждают в этом металлическом проводнике упорядоченное перемещение электронов, иначе говоря, электрический ток. Радиоволны с невообразимой скоростью ВлнабегаютВ» на облучатель. Поэтому в облучателе возникают быстро переменные токи

ВаВаВаВаВаВаВаВаВаВаВа Теперь эти токи надо передать на приемное устройство и исследовать. От облучателя к радиоприемнику электрические токи передаются по волноводам тАФ специальным проводникам имеющим, форму полых трубок. Форма сечений волноводов и их размеры могут быть различными

ВаВаВаВаВаВаВаВаВаВаВа Космические радиоволны или, точнее, возбужденные ими электрические токи поступили в радиоприемник. Можно было бы, пожалуй, подключив к приемнику репродуктор, послушать Влголоса звездВ». Но так обычно не делают. Голоса небесных тел лишены всякой музыкальности тАФ не чарующие Влнебесные мелодииВ», а режущее наш слух шипение и свист послышались Ва бы из репродуктора

ВаВаВаВаВаВаВаВаВаВаВа Астрономы поступают иначе. К приемнику радиотелескопа они присоединяют специальный самопишущий прибор, который регистрирует поток радиоволн определенной длины

ВаВаВаВаВаВаВаВаВаВаВа Два типа установок есть не только у рефлекторов, но и у радиотелескопов. Одни из них могут двигаться только вокруг вертикальной и горизонтальной осей. Другие снабжены параллактической установкой тАФ таких, правда, пока меньшинство. Установки радиотелескопов имеют очень важное назначение: как можно точнее нацелить зеркало на объект и сохранить такую ориентировку во время наблюдений

ВаВаВаВаВаВаВаВаВаВаВа Есть между радиотелескопами и рефлекторами большие различия, столь большие, что забывать о них нельзя. Прежде всего, размеры собирателей излучений тАФ зеркал. Самый большой из существующих в нашей стране телескопов-рефлекторов 6-метровый инструмент Специальной астрофизической обсерватории. Зеркала радиотелескопов значительно больше. У рядовых из них они измеряются метрами, а один из самых больших подвижных действующих радиотелескопов имеет зеркало поперечником 76 м . До последнего времени крупнейшим радиотелескопом был телескоп в Аресибо (Пуэрто-Рико). Неподвижное зеркало этого телескопа имеет диаметр 300 м и вмонтировано в кратер одного бездействующих вулканов. Этот инструмент может работать и как радиолокатор, причем радиосигналы от него могут быть уловлены (на уровне земной радиотехники) в пределах всей нашей Галактики

ВаВаВаВаВаВаВаВаВаВаВа В той же Специальной астрофизической обсерватории АН СССР находится 600-метровый радиотелескоп. В отличии от радиотелескопа в Пуэрто-Рико, главная часть нашего радиотелескопа представляет собой не сплошное металлическое вогнутое зеркало, а кольцо диаметром 600 м , состоящее из 895 подвижных алюминиевых отражателей, каждый из которых имеет размеры 2*7,5 м. Этот крупнейший в мире радиотелескоп рассчитан на прием радиоволн с длиной волны от 8 мм Ва до 30 см . По ряду параметров (в частности, по разрешающей способности) этот инструмент не имеет себе равных в мире. В недалеком времени будут построены еще большие радиотелескопы, тогда как рефлекторы с поперечником зеркала 10 м вряд ли удастся создать в ближайшие двадцать-тридцать лет. В чем же причина столь существенного различия?

ВаВаВаВаВаВаВаВаВаВаВа Секрет прост. Ва Изготовить зеркало телескопа-рефлектора в техническом отношении несравненно труднее, чем гораздо большее по размерам зеркало радиотелескопа

ВаВаВаВаВаВаВаВаВаВаВа Для того чтобы параболическое зеркало давало в своем фокусе достаточно редкое, четкое изображение небесного объекта (неважно, в видимых или невидимых лучах), поверхность зеркала не должна уклоняться от идеальной геометрической поверхности более чем на 1/10 длины волны Ва собираемого излучения. Такой ВлдопускВ» верен как для видимых лучей света, так и для радиоволн. Но для радиоволн 1/10 длины волны измеряется миллиметрами, а то и сантиметрами, тогда как для лучей видимого света этот допуск ничтожно мал тАФ сотые доли микрона! Как видите, важны не абсолютные значения шероховатости зеркал, а их отношение Ва к длине волны Ва собираемого излучения

ВаВаВаВаВаВаВаВаВаВаВа О том, как трудно создать крупный рефлектор, мы уже говорили. Радиотелескоп с поперечником в десятки метров построить легче. Ведь если даже этот телескоп будет принимать радиоволны с длиной волны 1,25 см , то шероховатости не должны по размерам превышать 1 мм тАФ допуск вполне технически осуществимый

ВаВаВаВаВаВаВаВаВаВаВа В некоторых радиотелескопах, рассчитанных на прием радиоволн с длиной, измеряемой многими метрами, зеркала делаются не сплошные, а сетчатыми. Этим значительно уменьшается вес инструмента, ив то же время, если размеры ячеек малы в сравнении с длиной радиоволн, решетчатое зеркало действует как сплошное. Иначе говоря, для радиоволн отверстия в зеркале радиотелескопа, в сущности, являются неощутимыми ВлнеровностямиВ»

ВаВаВаВаВаВаВаВаВаВаВа Подчеркнем одну замечательную особенность описываемых радиотелескопов тАФ они могут работать на различных длинах волн. Ведь очевидно, что свойство параболических зеркал концентрировать излучение в фокусе не зависит от длины волны этого излучения. Поэтому, меняя облучатель, то есть приемную антенну, можно ВлнастраиватьВ» радиотелескоп на желаемую длину волн. При этом, конечно, требуется изменить частоту радиоприемника

ВаВаВаВаВаВаВаВаВаВаВа Чем больше размеры зеркала, тем больше излучения оно собирает. Количество собираемого излучения, очевидно, пропорционально площади зеркала. Значит, чем больше зеркало, тем чувствительнее телескоп, тем более слабые источники излучения удается наблюдать тАФ ведется ли прием на радиоволнах или в лучах видимого света

ВаВаВаВаВаВаВаВаВаВаВа Замечательно, что радиотелескопы можно устанавливать в любом пункте страны. Ведь они совсем не зависят от капризов погоды или прозрачности атмосферы. С помощью радиотелескопов можно исследовать Вселенную хоть в проливной дождь!

4.Борьба с помехами.

ВаВаВаВаВаВаВаВаВаВаВа Нелегко создать сплошное металлическое зеркало с поперечником в несколько десятков метров, да еще установить так, чтобы, перемещая зеркало с удивительной плавностью, его можно было нацелить на любой участок неба. Каждое такое творение рук человеческих есть истинное чудо современной техники

ВаВаВаВаВаВаВаВаВаВаВа Иногда зеркало радиотелескопа, как уже говорилось, делают очень большим, но неподвижным. При высокой чувствительности подобный телескоп ограничен в своих возможностях тАФ он всегда направлен на одну и ту же точку неба

ВаВаВаВаВаВаВаВаВаВаВа Впрочем, и неподвижный телескоп все-таки движется, ведь он находиться на поверхности Земли, а земной шар непрерывно и равномерно вращается вокруг своей воображаемой оси. Поэтому в поле зрения неподвижного радиотелескопа постоянно появляются все новые и новые небесные тела, причем наблюдению доступен довольно широкий круговой пояс неба. Разумеется, через сутки, когда Земля совершит полный оборот, картины в поле зрения радиотелескопа снова начнут повторяться

ВаВаВаВаВаВаВаВаВаВаВа Радиоприемники, присоединенные к антенне радиотелескопа, очень чувствительны. Если, например, к ним просто подключить какой-нибудь проводник, то приемник станет реагировать на Ва беспорядочные тепловые движения в этом проводнике. Яснее говоря, тепловое движение электронов вызывает на концах проводника беспорядочно меняющиеся напряжения, пропорциональные температуре проводника. В приемнике эти процессы приобретут характер ВлшумовВ»

ВаВаВаВаВаВаВаВаВаВаВа Хотя мощность таких помех от антенного устройства ничтожно мала, они все же, как это не обидно, подчас в десятки, а иногда и в сотни раз превосходят мощность космического радиоизлучения. Мешают также и шумы, возникающие в самом приемнике при работе транзисторов

ВаВаВаВаВаВаВаВаВаВаВа Шумы, порожденные аппаратурой, как бы маскируются под космическое излучение. Они похожи друг на друга и усиливаются в приемнике одновременно. Этим обстоятельством ограничивается чувствительность современных радиотелескопов. Однако с помощью большого усложнения аппаратуры удается зарегистрировать сигналы в сто раз более слабые, чем шумы аппаратуры

ВаВаВаВаВаВаВаВаВаВаВа При изучении слабых источников космических радиоволн применяют довольно сложные и хитроумные методы и устройства, позволяющие уловить неуловимое. И здесь победа остается в конце концов за человеком. Рост техники радиоастрономии происходит очень бурно, и с каждым годом радиотелескопы становятся все более и более чувствительными

ВаВаВаВаВаВаВаВаВаВаВа Впрочем, уже сейчас чувствительность радиотелескопов вызывает удивление. Если сравнить энергию излучения, воспринимаемую самыми лучшими из современных радиотелескопов, с энергией видимого света, посылаемого звездами, то окажется, что радиотелескопы в тысячи раз чувствительны гигантских телескопов-рефлекторов. Среди всевозможных приемников электромагнитных волн радиотелескопы не имеют себе равных

5.О зоркости радиотелескопов.

ВаВаВаВаВаВаВаВаВаВаВа Благодаря сложным оптическим явлениям лучи от звезды, уловленные телескопом, сходятся не в одной точке (фокусе телескопа), а в некоторой небольшой области пространства вблизи фокуса, образуя так называемое фокальное пятно. В этом пятне объектив телескопа конденсирует электромагнитную энергию светила, уловленную телескопом. Если взглянуть в телескоп, звезда нам покажется не точкой, а кружочком с заметным диаметром. Но это не настоящий диск звезды, а только ее испорченное изображение, вызванное несовершенством телескопа. Мы видим созданное телескопом фокальное пятно

Чем больше диаметр объектива, тем меньше и размеры фокального пятна

С величиной фокального пятна тесно связана разрешающая способность телескопа. Так называют наименьшее расстояние между двумя источниками излучения, которые данный телескоп дает различить в отдельности. Если, например, в двойной звезде обе звезды так близки на небе друг к другу, что их изображения, создаваемые телескопом, попадают практически внутрь фокального пятна, двойная звезда покажется в телескоп одиночной

Оптические телескопы обладают весьма большой разВнрешающей способностью. В настоящее время наилучВншие из оптических телескопов способны ВлразделитьВ» двойные з везды с расстоянием между составляющими в 0,1 секунды дуги! Под таким углом виден человечеВнский волос на расстоянии 30 м .

Радиотелескопы воспринимают весьма длинноволВнновое излучение. Поэтому фокальное пятно в радиоВнтелескопах огромно. И соответственно разрешающая способность этих инструментов весьма низка. ОказыВнвается, например, что радиотелескоп с диаметром зеркала 5 м при длине радиоизлучения 1 м способен разделить источники излучения, если они отстоят друг от друга больше чем на д е сять градусов!

Десять градусов тАФ это двадцать видимых поперечВнников Луны. Значит, указанный радиотелескоп не споВнсобен ВлразглядетьВ» в отдельности такие мелкие для него небесные светила, как Солнце или Луна

Ясно, что низкая разрешающая способность обычВнных небольших радиотелескопов тАФ большой недостаВнток; даже при огромных размерах зеркала она, как правило, уступает разрешающей силе человеческого глаза (не говоря уже об оптических телескопах). Как же можно устранить это препятствие?

Физикам уже давным-давно известно явление слоВнжения волн, названное ими интерференцией. В школьВнном учебнике физики подробно описано, какое значеВнние имеет интерференция на практике. Оказывается, интерференцию можно использовать в радиоастроВнномии

Вообразим, что одновременно из двух источников распространяются две волны. Если они, как говорят физики, находятся в противоположных фазах, то есть ВлгорбВ» одной приходится как раз против ВлвпадиныВ» другой, обе волны ВлпогасятВ» друг друга, и колебания среды прекратятся. Если это световые волны тАФ настуВнпит тьма, если звуковые тАФ тишина, если волны на воде тАФ полный покой

Может случиться, что волны находятся в одинакоВнвых фазах (ВлгорбВ» одной волны совпадает с ВлгорбомВ» другой). Тогда такие волны усиливают друг друга, и колебания среды будут совершаться с удвоенной инВнтенсивностью

Представим себе теперь устройство, называемое радиоинтерферометром (рис.3 ). Это два одинаковых радиотелескопа, разделенных расстоянием (базой) и соед и ненных между собой электрическим кабелем, к середин е которого присоединен радиоприемник. От источника радиоизлучения на оба радиотелескопа неВнпрерывно приходят радиоволны. Однако тем из них, которые попадают на левое зеркало, приходится проВнделать несколько больший путь, чем радиоволнам, уловленным правым радиотелескопом. Разница в пуВнтях, называемая разностью хода, равна отрезку АБ. Нетрудно сообразить, что если в этом отрезке укладыВнвается четное число полуволн улавливаемого радиоВнизлучения, то ВллевыеВ» и Влправы е В» радиоволны придут в приемник с одинаковой фазой и усилят друг друга. При нечетном числе полуволн произойдет обратное тАФ взаимное гашение радиоволн, и в приемник радиосигВнналы вовсе не поступят

Обратите внимание: при изменении направления на источник излучения меняется и разность хода

Достаточно при этом (что очень важно!) л и шь весьма незначительное изменение угла j , чтобы ВлгашениеВ» волн сменилось их усилием или наоборот, на что сраВнзу же отзовется весьма чувствительный рад и опр и Внемник

Радиоинтерферометры делают, как прав и ло, неВнподвижными. Но ведь Земля вращается вокруг своей оси, и поэтому положение светил на небе непрерывно меняется. Следовательно, в радиоинтерферометре поВнстоянно будут наблюдаться периодические усиления и ослабл е ния радиопередач и от наблюдае м ого источн и Внка космических радиоволн

Радиоинтерферометры гораздо ВлзорчеВ» обычных радиотелескопов, так как они реагируют на очень маВнлые угловые смещения светила, а значит, и позволяВнют исследовать объекты с небольшими угловыми разВнмерами. Иногда радиоинтерферометры состоят не из двух, а из нескольких радиотелескопов. При этом разВнрешающая способность радиоинтерферометра сущестВнвенно увеличивается. Есть и другие технические устВнройства, которые позволяют современным Влрадио глазамВ» астрономов стать очень ВлзоркимиВ», гораздо более зоркими, чем невооруженный человеческий глаз!

Ва

рис.3 Схема радиоинтерферометра ( d - его база, т.е. расстояние между радиотелескопами, j характеризует направление на источник радиоволн)

Ва

Радиоинтерферометры гораздо ВлзорчеВ» обычных радиотелескопов, так как они реагируют на очень маВнлые угловые смещения светила, а значит, и позволяВнют исследовать объекты с небольшими угловыми разВнмерами. Иногда радиоинтерферометры состоят не и з двух, а из нескольких радиотелескопов. При этом разВнрешающая способность радиоинтерферометра сущестВнвенно увеличивается. Есть и другие технические устВнройства, которые позволяют современным Влрадио глазамВ» астрономов стать очень ВлзоркимиВ», гораздо более зоркими, чем невооруженный человеческий глаз !

В феврале 1976 года советские и американские ученые осуществили интересный эксперименттАФ радиоВнтелескопы Крымской и Хайсптекской (США) обсерва Вн торий в этом опыте играли роль ВлглазВ» исполинского радиоинтерферометра, а расстояние во много тысяч километров между этими обсерваториями было его базой. Так как база была очень велика и космические радио объекты наблюдались с разных континентов, доВнстигнутая разрешающая способность оказалась поисВнтине фантастической тАФ одна десятитысячная доля сеВнкунды дуги! Под таким углом виден с Земли на Луне след от ноги космонавта! Позже к этим экспериме н Внтам присоединились и австралийские ученые, так что астрономы ВлвзглянулиВ» на космические радиоисточВнники сразу с трех континентов. Результаты оправдали затраченные усилия: в ядрах галактик и квазарах обнаружены взрывные процессы необычайной актив Вн ности, причем в ряде случаев наблюдаемая скорость разлета космических облаков в квазарах, по - видимоВнму, превосходит скорость света!

Таким образом, новая техника поставила перед наукой и но в ые проблемы принц и п и ального характеВнра. Достигнутая ныне разрешающая способность раВндиоинтерферометров тАФ это еще не предел. В будущем, вероятно, радиотелескопы станут еще зорче

Кстати сказать, и в оптической астрономии исполь Вн зуют интерферометры. Их присоединяют к крупным телескопам, чтобы измерить реальные поперечники зв е зд. В обоих случаях интерферометры играют роль своеобразных ВлочковВ», позволяющих рассмотреть важВнные подробности в окружающей нас Вселенной

Но оптическ и е и н терферометры по зоркост и знаВнчительно уступают тем, которые употребляются ныне в радиоастрономии

6.ВлРадио э хоВ» в астроном и и.

До сих пор речь шла о пассивном изучении космичеВнских радиоволн. Они улавливаются радиотелескопами, и задача астронома заключается л и шь в том, чтобы наилучшим образом расшифровать эти сигналы, полуВнчить с их помощью как можно больше сведений о неВнбесных телах. При этом исследователь н икак не вмеВншивается в ход изучаемого им явления тАФ он лишь пассивно наблюдает

Та отрасль радиоастрономии, с которой мы теперь кратко познакомимся, имеет и ной, если так можно выразиться, активный характер. Ее называют радиоВнлокационной астроном и ей

Слово Вллокац и яВ» означает опре д елен и е местополоВнж е н и я какого- ни будь предмета. Если, например, для этого используется звук, то говорят о звуковой локаВнци и . Ею, как известно, широко пользуются современВнные мореплаватели. Особое устройство, называемое эхолотом, посылает в направлении ко дну океана коВнроткие, но мощные неслышимые ультразвуки. ОтраВнз и вшись от дна, они возвращаются, и эхолот фиксиВнрует время, затраченное звуком на путешествие до дна и обратно. Зная скорость распространения звука в воде, легко подсчитать глубину океана

Подобным же образом можно измерить и глубину колодца или какого-нибудь ущелья. Громко крикнув, затем ждите, когда до вашего уха донесется эхо тАФ отраженный звук. Учтя, что скорость звука в воздухе равна 337 м/с, легко вычислить искомое расстояние. Любопытно, что звуковая локация встречается и в мире животных. Летучая мышь обладает Ва специальным естественным локационным органом, который, испуская неслышимые звуки, помогает мыши ориентироваться в полете. Эти ультразвуки поглощаются в толстом слое волос, и поэтому, не получив обратного звукового эха, летучая мышь воспринимает голову как Влпустое местоВ». Этим и объясняется, что летучая мышь иногда в темноте ударяется о головы людей, не прикрытые головным убором

Когда говорят о ВлрадиолокацииВ», то под этим словом подразумевают определение местоположения предмета с помощью радиоволн. Радиолокационная астрономия тАФ еще совсем молодая отрасль науки. Систематически радиолокационные наблюдения небесных тел начались всего пятьдесят лет назад. И Ва все же достигнутые успехи весьма значительны. Очень интересны и дальнейшие перспективы этого активного метода изучения небесных тел.В»АктивногоВ» потому, что здесь человек сам направляет в космос созданные им искусственные радиоволны и, наблюдая их отражения, может затем по собственному желанию видоизменить эксперимент

Образно говоря, в радиолокационной астрономии человек ВлдотрагиваетсяВ» до небесных тел созданным им радиолучем, а не пассивно наблюдает их излучение

7.Радиолокация Луны и планет.

Еще в 1928 году, когда большинство радиолюбителей пользовались примитивными детекторными приемниВнками, советские ученые Л. И. Мандельштам и Н. Д. Папалекси рассматривали вопрос о посылке раВндиосигнала на Луну и приеме па Земле радиоэха. Тогда это была только смелая мечта, далеко опереВнжавшая действительность. Но такова характерная черта больших ученых тАФ их мысль опережает факты и видит то, что становится реальностью лишь в будущем

В годы второй мировой войны Л. И. МандельВнштам и Н. Д. Папалекси снова вернулись к занимавВншей их идее. Теперь настали другие времена. РадиоВнлокация прочно вошла в практику военной жизни, и радиолокаторы уверенно нащупывали невидимые цели

Советские ученые на основе новых данных подсчиВнтали, какова должна быть мощность радиолокатора и другие его качества, чтобы с его помощью можно было осуществить радиолокацию Луны. Научная ценВнность такого эксперимента была вне сомнений. Ведь до сих пор, чтобы определить расстояние до Луны, приходилось наблюдать ее положение среди звезд одВнновременно из двух достаточно удаленных друг от друга обсерваторий. Радиолокация решила бы ту же задачу при наблюдениях из одного пункта. Учитывая быстрый прогресс радиотехники, можно было ожиВндать, что радиолокационные измерения астрономичеВнских расстояний дадут результаты гораздо более точВнные, чем те, которые были получены в прошлом

Трудности, однако, оказались огромными. Расчеты показали, что при прочих равных условиях мощность отраженного сигнала убывает обратно пропорциональВнно четвертой степени расстояния до цели. Получалось, что лунный радиолокатор должен обладать примерно в тысячу раз большей чувствительностью, чем обычВнная радиолокационная станция береговой обороны, обнаруживавшая в те годы самолет неприятеля с расВнстояния в двести километров

И все же проект казался довольно убедительным, и уверенность его авторов в успехе вскоре была опВнравдана фактами

В начале 1946 года почти одновременно, но с разВнличными установками, венгерские и американские радиофизики осуществили радиолокацию Луны

На Луну посылались мощные импульсы радиоволн длиной 2,7 м . Каждый импульс имел продолжительВнность 0,25 секунды, причем пауза между импульсами составляла 4 секунды. Антенна радиолокатора была еще весьма несовершенна: она могла поворачиваться только вокруг вертикальной оси. Поэтому исследоваВнния велись лишь при восходе или заходе Луны, когда последняя находилась вблизи горизонта

Приемное устройство радиолокатора уверенно заВнфиксировало слабый отраженный сигнал, лунное раВндиоэхо

Путь до Луны и обратно радиоволны совершили всего за 2,6 сек, что, впрочем, при их невообразимо большой скорости не должно вызывать удивления. Точность этого первого радиоизмерения из-за несоверВншенства аппаратуры была еще очень низка, но все же совпадение с известными ранее данными было весьма хорошее

Позже радиолокация Луны была повторена на многих обсерваториях, и с каждым разом со все больВншей точностью и, конечно, с большей легкостью

Большие возможности радиолокации обнаружиВнлись при наблюдении так называемой либрации Луны. Под этим термином астрономы понимают своеобразВнные ВлпокачиванияВ» лунного шара, вызванные отчасти геометрическими причинами (условиями видимости), отчасти причинами физического характера. Благодаря либрации земной наблюдатель видит не половину, а около 60% лунного шара. Значит, либрация позволяВнет нам иногда ВлзаглядыватьВ» за край видимого лунВнного диска и наблюдать пограничные районы обратВнной стороны Луны

При ВлпокачиванииВ», или либрации, Луны один ее край приближается к наблюдателю, а другой удаВнляется. Скорость этого движения очень мала тАФ поВнрядка 1 м/сек, что меньше даже скорости пешехода. Но радиолокатор способен, оказывается, обнаружить и такие смещения

Радиолокатор посылает на Луну волны опреВнделенной длины. Естественно, что и отраженный радиосигнал будет обладать той же длиной волны. Можно сказать, что радиоспектр отраженного сигнала представляет собой одну определенную ВлрадиолиниюВ»

Если бы Луна не ВлпокачиваласьВ» относительно земного наблюдения, радиоспектры посланного и отраженного импульса были бы совершенно одинаковыми. На самом же деле разница, хотя и небольшая, все же есть. Радиоволна, отразившаяся от того края Луны, который приближается к земному наблюдателю, по принципу Доплера будет иметь несколько большую частоту и, следовательно, меньшую длину, чем радиоволна, посланная на Луну. Для другого удаляющегося края Луны должен наблюдаться противоположный эффект. В результате ВлрадиолинияВ» в радиоспектре отраженного импульса будет более широкой, растянутой, чем ВлрадиолинияВ» посланного импульса. По величине расширения можно вычислить скорость удаления краев Луны. Этим же методом можно определить периоды вращения планет вокруг оси и скорости их движения по орбите

Раньше требовались многолетние высокоточные оптические наблюдения Луны, чтобы затем после долгих вычислений получить величину либрации. Радиолокаторы решили эту задачу, так сказать, непосредственно и несравненно быстрее

При каждом измерении пользуются некоторым эталоном тАФ меркой, употребляемой как единица длины. Для измерений на земной поверхности таким эталоном служит метр. Для астрономии расстояние ни метр, ни даже километр не являются вполне подходящей единицей масштаба тАФ слишком уж велики расстояния между небесными телами. Поэтому астрономы употребляют вместо метра гораздо более крупную единицу длины. Называется она Властрономической единицейВ» ( сокращенно Вла.е.В»). По определению астрономическая единица равна среднему расстоянию от Земли до Солнца. Чтобы связать астрономические измерения длины с чисто земными мерками расстояний, астрономическую единицу в конечном счете сопоставляют с метром тАФ выражают астрономическую единицу в метрах или километрах

Во времена Иоганна Кеплера (17 век) величину астрономической единицы еще не знали тАФ она впервые была найдена только век спустя. Не были известны и расстояния от Солнца до других планет Солнечной системы. Тем не менее, третий закон Кеплера Ва гласит, что Влквадраты времен обращения планет вокруг Солнца относятся между собой как кубы их средних расстояний до СолнцаВ». Каким же образом, не зная расстояний планет до Солнца, Кеплер мог открыть этот важный закон?

Весь секрет, оказывается, в том, что, не зная абсолютных (выраженных в километрах) расстояний планет до Солнца, можно сравнительно просто из наблюдений вычислить их относительные расстояния, то есть узнать, во сколько раз одна планета дальше от Солнца, чем другая

Зная же относительные расстояния планет от Солнца, можно сделать чертеж Солнечной системы. Не будет хватать только одного тАФ масштаба. Если бы можно было указать, чему равно расстояние в километрах между любыми двумя телами на чертеже, то, очевидно, этим самым был бы введен масштаб чертежа, и в единицах данного масштаба сразу можно было бы получить расстояние всех планет до Солнца

До применения радиолокации среднее расстояние от Земли до Солнца, то есть астрономическая единица, считалось равным 149504000 км . Эта величина измерена не абсолютно точно, а приближенно с ошибкой в 17000 км в ту или другую сторону

Некоторых такая ошибка может ужаснуть. С этой точки зрения расстояние от Земли до Солнца измерено очень точно тАФ относительная ошибка не превышает сотых долей процента. Но постоянное стремление к повышению точности характерно для любой точной науки . Поэтому можно понять астрономов , когда они снова и снова уточняют масштаб Солнечной системы и стремятся применить самые совершенные методы для измерения астрономической единицы. Вот тут-то и приходит на помощь радиоастрономия

Совершенно очевидно, что радиолокация планет из-за их удаленности несравненно труднее радиолоВнкации Луны. Не забудьте, что мощность радиоэха падает обратно пропорционально четвертой степени расстояния, то есть очень сильно. Но современная радиотехника преодолела и эти трудности

В феврале 1958 года американскими учеными впервые проведена радиолокация ближайшей из плаВннет тАФ Венеры, а в сентябре того же года поймано радиоэхо от Солнца

Во время радиолокации Венера находилась в 43 миллионах километров от Земли. Значит, радиоволне требовалось примерно 5 минут для путешествия Влтуда и обратноВ». Сигналы подавались в течение 4 минут 30 секунд, а следующие 5 минут ВлподслушивалосьВ» радиоэхо. Длительная посылка радиосигналов была вызвана необходимостью тАФ при коротком импульсе единичное отражение от Венеры не могло наблюВндаться

Даже с такими ухищрениями разобраться в приВннятых радиосигналах было нелегко. Крайне слабые, отраженные от Венеры радиоволны маскировались собственными шумами приемной аппаратуры. Только электронные вычислительные машины после почти годовой обработки наблюдений наконец доказали, что радиолокатор все-таки принял очень слабое раВндиоэхо от Венеры. После первого успеха радиолокаВнция Венеры была повторена еще несколько раз

Радиоэхо от Венеры получилось в 10 миллионов раз более слабым, чем радиоэхо от Луны. Но радиоВнлокаторы его все-таки поймали тАФ таков прогресс раВндиотехники за какие-нибудь двенадцать лет

Гораздо более уверенно и с лучшими результатаВнми провели радиолокацию Венеры в апреле 1961 года советские ученые. По их данным удалось уточнить велиВнчину астрономической единицы. Оказалось, что СолнВнце на 95 300 км дальше от Земли, чем думали до тех пор, и астрономическая единица равна 14959930001. Ошибка в этом измерении не превышает 2000 км в ту или другую сторону, что по отношению к измеренному расстоянию составляет всего лишь тысячные доли процента!

Теперь величину астрономической единицы знают еще точнее, что позволяет с меньшими ошибками вычислять траектории космических ракет, а это имеет большое значение для межпланетных путешествий

Солнце для радиолокатора гораздо более крупная цель, чем Венера. Но зато Солнце тАФ само мощный источник космических радиоволн. Чтобы эти радиоВнволны не ВлзаглушилиВ» радиоэхо, отраженный от Солнца радиосигнал должен быть по крайней мере в сто раз сильнее сигнала, отраженного от Венеры

Радиолокация Солнца впервые проводилась так. Передатчик включался с интервалами в 30 секунд в продолжение 15 минут. Наблюдения начались в сентябре 1958 года и были продолжены весной 1959 года. При обработке также пришлось прибегнуть к помощи электронных вычислительных машин. В хороВншем согласии с предварительными расчетами получиВнлось, что радиосигнал, посланный с Земли, отразился от тех слоев солнечной короны, которые находятся на расстоянии 1,7 радиуса Солнца от его поверхности

Еще в 1959 году радиолокация Меркурия показаВнла, что сутки на этой планете близки к 59 земным суткам, то есть Меркурий не обращен всегда к СолнВнцу одной стороной, как считалось до этого. РадиолоВнкаторы выяснили также, что сутки на Венере в 243 раза длиннее земных, причем Венера вращается в направлении с востока на запад, то есть в сторону, обратную вращению всех остальных планет

Радиолуч сквозь облака Венеры ВлпрощупалВ» ее рельеф и установил существование на Венере кратеВнров, подобных лунным. Радиолокация уточнила данВнные о рельефе Марса. Но самое, пожалуй, удивительВнное было достигнуто в метеорной астрономии

8.Метеоры наблюдают днем.

Звездная ночь. В невообразимой дали тихо сияют тыВнсячи солнц. И вдруг как будто одна из звезд сорваВнлась и полетела, оставляя на небе узенькую светяВнщуюся полоску. Все явление обычно занимает доли секунды, реже несколько секунд

Так выглядят Влпадающие звездыВ», или метеориты,тАФ явление, хорошо знакомые каждому еще с детских лет. Когда по небу пролетает Влпадающая звездаВ», это означает, что в земную атмосферу из безвоздушного мирового пространства вторглась крохотная твердая частичка весом в граммы или даже доли грамма тАФ метеорное тело

Двигаясь со скоростью десятки километров в секунду, сильно сжимает перед собой воздух. Он ярко светится, образуя спереди метеорного тела так называемую Влвоздушную подушкуВ». Ее мы и видим как Влпадающую звездуВ», тогда как само метеорное тело из-за малости непосредственному наблюдению не доступно

Поединок твердой частички космического вещества и земной атмосферы всегда имеет один исход. Примерно на высоте 80- 100 км метеорные тела полностью разрушаются, и остающаяся после них мельчайшая метеорная пыль медленно оседает на Землю. Так как яркость метеоров сравнима с видимой яркостью звезд, то до последнего времени Влпадающие звездыВ» наблюдались только по ночам, на темном фоне звездного неба

Радиоастрономия значительно расширила возможность изучения этих интересных явлений

Когда метеорное тело стремительно прорезает земную атмосферу, то, сталкиваясь с молекулами и атомами воздуха, оно частично ионизует их, то есть ВлвышибаетВ» из них некоторые электроны. В результате за метеорным телом образуется длинный цилиндрический слой из ионизованных газов. Его размеры весьма внушительны тАФ при поперечнике в несколько метров длина этой ионизованной ВлтрубыВ» достигает десятков километров. Вследствие диффузии (рассеивания газов) ВлтрубаВ» постепенно расширяется и в конце концов, разрушаемая ветрами и другими причинами, как бы растворяется в атмосфере

Мы уже отмечали, что слой ионизованных газов для радиоволн определенных длин является своеобразным зеркалом. Значит, с помощью радиолокатора можно получить радиоэхо и от ионизованных метеорных следов. Возможности радиотехники в этой области исключительно велики. Радиолокаторы могут быстро определить расстояние до метеора, скорость метеорного тела, его торможение в атмосфере и, наконец, положение радианта, то есть той точки неба, откуда, как нам кажется, вылетел метеор

Опыты показали, что наилучшие результаты получаются, если радиолокация метеоров ведется на волнах длиной около 5 м

Современные радиолокаторы так чувствительны, что им доступны метеоры ВаВа 16-й звездной величины, то есть почти в 10000 раз менее яркие, чем самые слабые из звезд, доступных невооруженному глазу

Систематические радиолокационные наблюдения метеоров начались с 1946 года. В ночь с 9 на 10 октября этого года Земля должна была пересечь орбиту кометы Джакобини тАФ Циннера. Когда такое же событие происходило в 1933 году, на небе наблюдался интенсивный Влзвездный дождьВ». Сотни метеоров бороздили во всех направлениях звездное небо. В этот день земной шар встретился с метеорным потоком тАФ огромным роем метеорных тел, своеобразных ВлосколковВ» кометного ядра, несущихся вокруг Солнца по орбите породившей их кометы. Астрономы договорились называть метеорные потоки по тому созвездию, из которого, как нам кажется, вылетают соответствующие им метеоры. Так как метеорный дождь, связанный с кометой Джакобини тАФ Циннера, имеет радиант в созвездии Дракона, то порожденный ею метеорный поток получил название Драконит

Ежегодно в конце первой декады октября Земля встречается с драконидами тАФ метеорными телами потока Драконид. Но только иногда их звездные дожди бывают особенно обильными. Как раз такой случай и произошел в 1946 году, когда Земля пересекала наиболее плотную часть потока

К огорчению астрономов Ва в ночь с 9 на 10 октября 1946 года ярко светила Луна, и ее сияние сильно мешало обычным наблюдениям. Но для радиолокаторов лунный свет не помеха. Советские ученые Б.Ю. Левин и П.О. Чечик в ту ночь зарегистрировали радиоэхо от сотен метеоров, больВншинство которых оставалось невидимым

С тех пор радиолокационные наблюдения метеоров прочно вошли в практику работы многих обсерваторий. Ни туман, ни дождь, ни ослепительное дневное сияние Солнца не могут помешать радиолокаторам ВлнащупыватьВ» невидимые Влпадающие звездыВ». Они уверенно фиксируют как спорадические метеоры, то есть те метеоры, которые не связаны с каким-нибудь определенным метеорным потоком, таки и невидимые Влзвездные дождиВ». ВаВаВаВаВаВаВаВаВаВаВаВаВа

9.В поисках внеземных цивилизаций.

Вряд ли есть другая научная проблема, которая вызывала бы такой жгучий интерес и такие жаркие споры, как проблема связи с внеземными цивилизаВнциями. Литература по этой проблеме уже насчитыВнвает многие тысячи наименований. Созываются наВнучные конференции и симпозиумы, налаживается международное сотрудничество ученых, ведутся эксВнпериментальные исследования. По меткому выражеВннию Станислава Лема, проблема связи с внеземными цивилизациями подобна игрушечной матрешке тАФ она содержит в себе проблематику всех научных дисВнциплин

Одним из возможных каналов связи с разумными обитателями, по-видимому, может быть прием радиоВнсигналов от высокоразвитых внеземных цивилизаций. При современном уровне радиотехники возможна такВнже посылка сигналов с Земли далеким Влбратьям по разумуВ»

В конце 1959 года два известных зарубежных ученых Моррисон и Коккони выступили с проектом установления радиосвязи с обитателями других плаВннет. Суть этого проекта заключается в следующем: Внутри невообразимо огромной сферы радиусом в сотню световых лет заключено около ста тысяч звезд. Среди них найдутся десятки, а может быть, и сотни таких, которые окружены обитаемыми планеВнтами. Можно думать, что и перед другими цивилизаВнциями, достигшими такого же уровня развития, как наша, встал тот же вопрос тАФ как установить радиоВнсвязь с другими разумными обитателями Вселенной? Кто знает, быть может, и сейчас в направлении нашего Солнца кто-то посылает радиосигналы из глуВнбин звездного мира тАФ сигналы, на которые пока челоВнвечество отвечало молчанием! На какой же длине годны скорее всего ведется эта передача?

Неведомые нам разумные существа живут на плаВннете, окруженной атмосферой. Значит, и они, вероятно, могут радировать в космос только сквозь узкое ВлраВндиоокноВ» их атмосферы. Значит, возможный диапаВнзон радиоволн для ВлмежзвезднойВ» радиосвязи, скорее всего, ограничивается длинами от нескольких сантиВнметров до 30 м . Космические естественные источники радиоволн, как уже известно читателю, ведут постоВнянную интенсивную ВлрадиопередачуВ» на волнах метВнрового диапазона. Чтобы она не создавала досадные помехи, радиосвязь обитаемых миров разумно вести па длинах волн короче 50 см . Но очень короткие радиоволны, в несколько сантиметров, опять неприВнгодны тАФ ведь тепловое радиоизлучение планет соверВншается именно на таких волнах, и оно будет ВлглуВншитьВ» искусственную радиосвязь

И вот Моррисону и Коккони приходит в голову блестящая мысль. Радиосвязь надо вести на волнах, близких к 21 см , которые излучает межзвездный водород. Ведь разумные обитатели других планет должны понимать огромную роль межзвездного водорода в изучении Вселенной. Значит, и у них должна быть мощная радиоаппаратура, работающая именно на этой волне. Так как водород тАФ самый распространенный элемент в наблюдаемой нами части в селенной, то его излучение на волне длиной 21 см может рассматриваться как некий природный, ВлкосВнмическийВ» эталон длин. Значит, вероятнее всего прием радиосигналов с других обитаемых планет надо вести на волне длиной 21 см .

Трудно, конечно, предсказать, какой шифр будет скрыт в этих сигналах. Надо думать, что наши далекие Влбратья по космосуВ» воспользуются универсальным языком всех мыслящих существ тАФ языком маВнтематики. Может быть, их сигналы будут давать поВнследовательность цифр 1, 2, 3.. Или они передадут через бездны космоса шифрованное значение такого замечательного числа, как p . Во всяком случае, исВнкусственные радиосигналы на волне 21 см можно буВндет отличить от естественных. В частности, так как радиопередатчик установлен к а планете и вместе с ней обращается вокруг звезды, то благодаря эффекту Доплера искусственные радиосигналы должны периоВндически менять свою частоту

Проект Моррисона и Коккони вызвал в среде астрономов огромный интерес. С конца 1960 года в Национальной радиоастрономической обсерватории США Франк Дрейк начал систематические ВлпрослуВншиванияВ» некоторых звезд с целью обнаружить исВнкусственные радиосигналы. Для начала были выбраВнны две звезды, весьма похожие на Солнце. Это Тау из созвездия Кита и Эпсилон из созвездия Эридана. До каждой из них около одиннадцати световых лет. Прослушивание велось на радиотелескопе с диаметВнром зеркала 26 м .

Космос безмолвствовал. Впрочем, надеяться на быВнстрый успех было бы слишком наивно. Пройдут голы, а может быть, многие десятилетия, прежде чем удастся принять искусственные радиопередачи из глуВнбин Вселенной. Да и расшифровав эти сигналы и поВнслав в ответ свои, мы не можем ожидать быстрого, ВлоперативногоВ» разговора. Наши вопросы и их ответы будут распространяться со скоростью спета, а это значит, что от посылки вопроса до получения ответа пройдут десятилетия! К сожалению, ускорить разгоВнвор невозможно тАФ в природе нет ничего быстрее радиоволн,

С 1967 года поиски радиосигналов от инопланетян начались и в нашей стране. Эти работы ведутся под руководством известного советского ученого члена-корреспондента АН СССР В. С. Троицкого. В настоВнящее время на всенаправленных (а не на параболичеВнских) радиотелескопах ведется прием радиосигналов в диапазоне от 3 до 60 см . Одновременно подобные наблюдения проводятся и в других местах СоветсВнкого Союза. Если на всех этих далеких друг от друга радиотелескопах одновременно будут приняты загаВндочные ВлвсплескиВ» радиоизлучения, есть основания считать, что приняты радиосигналы (или какие-то радиопомехи) из космоса

Пока что и эти эксперименты не привели к желанВнному результату, хотя обнаружено новое явление тАФ всплески радиоизлучения естественного происхождеВнния, приходящие на Землю из ближнего космоса

Крупнейший в мире кольцевой 600-метровый раВндиотелескоп Специальной астрофизической обсерватоВнрии АН СССР уже с самого начала своей работы включился в поиски космических радиосигналов исВнкусственного происхождения

В США обсуждается проект ВлЦиклопВ», реализуВнемый с помощью Научно-исследовательского центра НАСА (Национальное управление по астронавтике и исследованию космического пространства). По проВнекту ВлЦиклопВ» система для приема радиосигналов от инопланетян состоит из тысячи радиотелескопов, установленных на расстоянии 15 км друг от друга II работающих совместно. В сущности, эта система радиотелескопов подобна одному исполинскому параВнболическому радиотелескопу с площадью зеркала 20 квадратных километров! Проект ВлЦиклопВ» предполаВнгается реализовать в течение ближайших 10тАФ20 лет. Такие Сроки не должны казаться чрезмерными, так как стоимость намечаемого сооружения поистине астрономическая тАФ не менее 10 миллиардов долларов!

Если система ВлЦиклопВ» станет реальностью, удастся в принципе принимать искусственные радиоВнсигналы в радиусе 1000 световых л е т. В таком огро м Вн н ом объеме космического пространства содерж и тся с в ыше милл и она солнце подобных звезд, часть которы х , возможно, окружена обитаемыми планетами. Чу в стВн в ительность системы ВлЦиклопВ» поразительна. Если бы вокруг ближайшей к нам звезды Альфа Центавра обращалась планета, подобная Земле (с таким же уровнем развития радиотехники), то с и стема Вл ЦиклопВ» была Ва бы способна уловить радиопередачи, проВнводимые друг для друга обитателями этой планеты!

Пока проект ВлЦиклопВ» не осуществлен, группа американских радиоастрономов пытается принять раВндиосигналы примерно от 500 ближайших звезд (в радиусе до 80 световых лет). Прием ведется на 100метровом параболическом радиотелескопе, одном из крупнейших в мире

Предпринята и первая попытка активной радиосвязи с инопланетянами. Как уже говорилось, 300метровый радиотелескоп в Аресибо может работать как радиолокатор на волне 10 см , причем его сигнал (с помощью радиотелескопов, подобных земным!)может быть уловлен в пределах всей нашей Галактики

16 ноября 1974 года, когда состоялось официальное открытие радиообсерватории Ва в Аресибо, гигантский радиолокатор послал шифрованное радиосообщение к инопланетянам. В этом сообщении в двоичной системе счисления закодированы важнейшие сведения о Земле и ее обитателях. Сигнал послан на шаровое звездное скопление в созвездии Геркулеса, содержащее около 30000 звезд. Если хотя бы около Ва одной из этих звезд есть высокоразвитая цивилизация, способная принять и расшифровать сигнал, ответ на него мы получим не ранее, чем через 48000 лет тАФ так далеки от нас эти звезды!

И все таки жажда общения со внеземным Разумом так сильна, что все технические и временные трудности кажутся преодолимыми. К тому же разумные наши собратья могут оказаться и по соседству с нами

Заключение .

А с чего все-таки началась радиоастрономия!? А Ва началось все с того, что американский радиоинженер Карл Янский в декабре 1931г. Обнаружил какие-то странные радиошумы, мешавшие передаче на волне 14,7 м . Выяснилось, что источником радиопомех было радиоизлучение Млечного Пути

Во время второй мировой войны радиолокаторы широко вошли в практику и были приняты на вооружение всех армий. В 1943г. Советские академики Л.И. Мандельштам и И.Д. Папалекси теоретически обосновали возможность радиолокации Луны, что и было осуществлено три года спустя. В после военные годы прогресс радиоастрономии приобрел бурный, почти взрывной характер

Вслед за радиолокацией метеоров (1945) и Венеры (1958) последовала радиолокация Юпитера (1963) и Меркурия (1963). В 1946г. На волне длиной 4,7 м был открыт мощный космический источник радиоизлучения в созвездии Лебедя. Еще годом раньше голландский астрофизик Ва Ван Де Хюлст теоретически обосновал возможность космического излучения на волне длиной 21 см , которое было обнаружено в 1951г. Радиоизлучение Солнца на волне длиной 18,7 м , открытое еще в 1947г., стало одним из важных явлений, характеризующих физическую природу центрального тела Солнечной системы

Современные радиотелескопы принимают космические радиоволны в шести диапазонах тАФ от субмиллимитрового (длина волны меньше миллиметра) до декаметрового (длина волны более десяти метров). Земная атмосфера пропускает радиоволны в диапазонах от 1, 4 и 8 мм и в интервале от 1 см до 20 м . Иначе говоря, наибольшая пропускаемая атмосферой длина радиоволны в 20000 раз больше наименьшей. Ва Между тем в оптическом диапазоне аналогичное отношение крайних длин электромагнитных волн близко к двум. Таким образом, в этом смысле ВлрадиоокноВ» в 10000 раз шире оптического ВлокнаВ»

Для приема космического радиоизлучения имеются различные типы радиотелескопов. Некоторые из них напоминают рефлекторы. В таких радиотелескопах радиоволны собирает металлическое вогнутое зеркало, иногда решетчатое. Зеркало концентрирует радиоволны на маленькой дипольной антенне, облучая ее. По этой причине приемная антенна в радиотелескопах называется облучателем. Меняя облучатель можно вести радиоприем на разных длинах волн. Возникающие в облучателе токи передаются на приемное устройство и там исследуются

У описанных радиотелескопов применяются два типа установок азимутная и параллактическая. В отличие от рефлекторов, зеркала радиотелескопов имеют очень большие размеры тАФ метры и даже десятки метров. Один из самых больших радиотелескопов с подвижной антенной имеется в Радиоастрономическом институте им. Планка (Германия). Поперечник его зеркала равен 100 м . Еще больше неподвижный радиотелескоп на острове Пуэрто-Рико. Его зеркало сделано из кратера потухшего вулкана, оно имеет поперечник 305 м и занимает площадь более 7 га ! В фокусе зеркала на высоте 135 м при помощи специальных стальных мачт укреплена гондола с облучателями. Гондола может перемещаться над зеркалом и потому принимать излучение с достаточно большой зоны неба

ВлРатан-600В»тАФ радиоастрономический телескоп Академии наук СССР. Он состоит из 895 отдельных зеркал Ва общей площадью 10000 м 2 , которые ВаВа установлены по окружности диаметром 600 м . Специальное устройство из отдельных зеркал позволяет формулировать параболическую поверхность, которая фокусирует космическое радиоизлучение на небольшом облучателе. ВлРатан-600В» может принимать радиоволны в диапазоне от 8 мм до 30 см

В радиоастрономии широко применяется давно известный в физике принцип интерференции, т.е. сложение электромагнитных волн с разными фазами

Радиоастрономия позволила исследовать радиоизлучение отдельных космических тел, а также изучить спиральное строение Галактики. Кроме того, радиоастрономы зафиксировали поразительно малые потоки энергии. Например, за всю полувековую историю радиоастрономии на волне длиной 21 см принято энергии 10 -7 . ВаВаВа

Ва

Ва

Вместе с этим смотрят:

Развитие авиации ВМФ в послевоенный период
Развитие и состояние систем телевидения в мире
Развитие пистолетов-пулеметов
Развитие средств связи