Космические объекты - Пульсары

КОСМИЧЕСКИЕ ОБЪЕКТЫ: ПУЛЬСАРЫ

Ва

С О Д Е Р Ж А Н И Е

1. Новый радиотелескоп в Кембридже

2. Открытие первого пульсара (рассказывает Джоселин Белл)

3. Пульсары имеет малые размеры

4. Можно ли увидеть пульсары?

5. Пульсар в Крабовидной туманности - видимая звезда

6. Что такое пульсары?

7. Томас Голд объясняет пульсары

8. Вопросы на которые нет ответов

а) действительно ли пульсары нетронные звезды

б) есть ли у пульсаров планеты

в) как образуются пульсары

Ва

Сообщение, опубликованное в феврале 1968 года в английском журнале "Nature", было столь удивительно, что его тут же подхватила вся мировая пресса. Группа ученых Кембриджа, руководимая Энтони Хьюишем, извещала о том, что ей удалось принять радиосигналы из глубин вселенной

После второй мировой войны начался расцвет радиоастрономии. Космический газ - межзвездное вещество - обладает способностью испускать и поглощать излучения в области радиочастот

Подобно свету, это излучение проходит сквозь земную атмосферу и может служить дополнительным источником информации о Вселенной

Исследуя космическое радиоизлучение, можно получать сведения о свойствах межзвездного вещества в нашей Галактике; удается также принимать и анализировать радиоизлучение межзвездного газа в других звездных системах. Галактики, дающие особенно интенсивное радиоизлучение, получили название радиогалактик

Приходящее к нам радиоизлучение испытывает влияние вещества, выбрасываемого Солнцем и движущегося в межпланетном пространстве к границам Солнечной системы. Наблюдаемые из-за этого временные флуктуации радиоизлучения во многом подобны мерцанию света звезд, обусловленному движениями воздушных масс в атмосфере

Именно для исследования подобных флуктуаций, обусловленных межпланетным веществом, и был предназначен радиотелескоп, строительство которого было начато в Кембридже в 60-е годы. На площади в два гектара было установлено более двух тысяч отдельных антенных элементов. Поскольку с помощью этого антенного поля пред полагалось исследовать флуктуации излучения радиоисточников, вызванные солнечным ветром, приемное устройство было рассчитано на регистрацию быстрых изменений приходящего радиоизлучения

Прежние радиотелескопы не давали такой возможности, и по этому кембриджский радиотелескоп как будто специально был приспособлен для открытия быстропеременных сигналов от пульсаров - открытие, которое отодвинуло на второй план ту задачу, ради которой радио телескоп был построен: исследования флуктуаций радиоизлучений, обусловленных солнечным ветром

Поскольку поворачивать гигантскую антенну невозможно, подобный радиотелескоп принимает радиоизлучение из узкой полосы небесной сферы, которая проходит над антенной радиотелескопа, пока Земля совершает свое суточное вращение. В июле 1967 года строительство было закончено и начались наблюдения. Круглые сутки регистрировалась интенсивность приходящего радиоизлучения с длиной волны 3.7 метра. За неделю на 210 метрах диаграммной ленты само писец рисовал кривые интенсивности излучения от 7 участков неба

Усилия были направлены на поиск стабильных радиоисточников, из лучения которых "мерцают", взаимодействуя с солнечным ветром

Наблюдениями на телескопе и трудоемкой обработкой результатов занималась аспирантка Джоселин Белл. Ее интересовали быстрые флуктуации радиоизлучений от космических источников, попадающих в поле зрения телескопа при суточном вращении Земли

Девять лет спустя Джоселин Белл в своей речи на одном из приемов вспоминала о том времени, когда она под руководством Хьюиша работала в Кембридже над диссертацией. Она рассказывала о выходящей из-под пера самописца нескончаемой ленте, которую ей приходилось просматривать. После первых трех десятков метров она научилась распознавать радиоисточники, мерцающие из-за солнечно го ветра, и отличать их от радиопомех земного происхождения

"Через шесть или восемь недель после начала исследований я обратила внимание на какие-то отклонения сигнала, зарегистрированного самописцем. Эти отклонения не очень походили на мерцания радиоисточника; не были они похожи и на земные радиопомехи. Кроме того, мне вспомнилось, что подобные отклонения мне однажды встречались и раньше, когда регистрировалось излучение от этого же участка неба. " Дж. Белл хотела вернуться к этой записи, но ее задержали другие дела. Только в конце октября 1967 года она вновь занялась этим явлением и попыталась записать сигнал с бо лее высоким временным разрешением. Однако источник на этот раз найти не удалось: он вновь дал о себе знать лишь к концу ноября

"На ленте, выходящей из-под пера самописца, я видела, что сигнал состоит из ряда импульсов. Мое предположение о том, что импульсы следуют один за другим через одинаковые промежутки времени, подтвердилось сразу же, как только лента была вынута из прибора. Импульсы были разделены интервалом в одну и одну треть секунды. Я тотчас же связалась с Тони Хьюишем, который читал в Кембридже лекцию для первокурсников. Первой реакцией его было заявить, что импульсы - дело рук человеческих. Это было естественно при данных обстоятельствах. Однако мне почему-то казалось возможным, что сигнал может идти и от какой-нибудь звезды. Все-таки Хьюиш заинтересовался происходящим и на другой день пришел на телескоп как раз в то время, когда источник входил в поле зрения антенны - и сигнал, к счастью, появился снова. " Источник со всей очевидностью имел неземное происхождение, поскольку сигнал появлялся каждый раз когда телескоп оказывался на этот участок неба. С другой стороны, импульсы выглядели так, как будто их посылают люди. Быть может, это представители неземной цивилизации? Едва ли, в прочем, сигнал шел от планеты, обращающейся вокруг звезды. В этом случае расстояние между соседними импульсами изменялось бы сообразно с периодом обращения планеты, поскольку расстояние до радиоисточника было бы непостоянно. "Незадолго до Рождества я предложила Тони Хьюишу выступить на конференции и на самом высоком научном уровне поставить вопрос о том, каким образом следует истолковать эти результаты. Мы не верили, что сигналы посылает какая-то чужая цивилизация, однако такое предположение однажды высказывалось, и у нас не было доказательств, что мы имеем дело с радиоизлучением естественного происхождения. Если же допустить, что где-то во вселенной нами были обнаружены живые существа, то возникала любопытная проблема: как следует обнародовать эти результаты, что бы это было сделано со всей ответственностью? Кому первому сообщить об этом? В тот день мы так и не решили эту проблему: я отправилась до мой в полной растерянности. Мне нужно было писать свою диссертацию, а тут откуда-то взялись эти окаянные "зеленые человечки", которые выбрали именно мою антенну и рабочую частоту телескопа, чтобы установить связь с землянами. Подкрепившись ужином, я вновь отправилась в лабораторию, чтобы проанализировать еще несколько лент. Незадолго до закрытия лаборатории я просматривала запись, относящуюся к совершенно к другому участку неба и на фоне сигнала от мощного радиоисточника Кассиопея А заметила знакомые возмущения. Лаборатория закрывалась, и мне пришлось идти, однако я знала, что именно этот участок неба рано утром будет в поле зрения телескопа. Из-за холода что-то испортилось в приемном устройстве нашего телескопа. Конечно, так всегда и бывает!

Однако я пощелкала выключателем, побранилась, посокрушалась, и минут пять установка работала нормально. И это были те самые пять минут, когда появились возмущения. На этот раз возмущения имели вид импульсов, следующих через 1,2 секунды. Я положила ленты на стол Тони и отправилась праздновать Рождество. Какая удача! Было совершенно невероятно, чтобы "зеленые человечки" из двух разных цивилизаций выбрали одну и ту же волну и то же время для посылки сигналов на нашу планету"

Вскоре Джоселин Белл обнаружила еще два пульсара, а в конце января 1968 года было послано сообщение в журнал "Nature". В нем шла речь о первом пульсаре

Более всего пульсары поразили астрономов тем, что интенсивность их излучения изменялась чрезвычайно быстро. У наиболее быстрых переменных звезд период, с которым изменяется их блеск, может составлять один час или того меньше. Блеск белого карлика в двойной звездной системе Новой 1934 года в созвездии Геркулеса изменяется с периодом 70 секунд - но пульсары оставили этот ре корд далеко позади. На это указывали и исследования, проведенные в последующие месяцы: с чем более высоким временным разрешением регистрировались импульсы, тем яснее просматривалось их тонкая структура, показывавшая, что интенсивности радиоизлучений изменяется за десятитысячные доли секунды

По скорости изменения интенсивности излучения можно оценить размеры той области пространства, из которой оно исходит. Рассмотрим для простоты полусферу, удаленную от наблюдателя на столь большое расстояние, что и невооруженным глазом, и в телескоп оно выглядит просто точкой. Пусть на поверхности сферы происходит очень короткая вспышка света. Что же видит удаленный наблюдатель? Излучение распространяется от сферы со скоростью света. Поскольку расстояние от наблюдателя до различных точек сферы не одинаково, излучение, одновременно испущенное всеми точками сферы, приходит к наблюдателю в различные моменты времени: вначале поступает сигнал от центра "видимого диска", который ближе всего к наблюдателю, затем от окружающей его области, и, наконец, от краев. Таким образом, регистрируемый наблюдателем импульс "размазывается" он имеет большую длительность, чем исходный короткий импульс света. Продолжительность импульса увеличивается на то время, за которое свет проходит расстояние, равное радиусу сферы. Сказанное можно распространить не только на короткие световые импульсы, но и на любые изменения яркости свечения сферы, поскольку сигнал, соответствующий, как уменьшению, так и увеличению яркости, доходит до наблюдателя от различных точек сферы за неодинаковое время. "Размазывание" сигнала будет наблюдаться и в том случае, когда форма излучающего объекта отличается от сферической

Таким образом, если регистрируемые изменения яркости источника происходят, скажем, за десятитысячные доли секунды, то из этого следует, что размеры источника не могут быть существенно больше того расстояния, которое свет проходит за это время, то есть 30 км. Если бы источник имел большие размеры, то изменения яркости "размазывались" бы на более длительное время. В пределах одного импульса интенсивность изменяется в течение одной десяти тысячной доли секунды; это видно по крутым фронтам зубцов. Поскольку радиоизлучение распространяется со скоростью света, из этого можно заключить, что объект, от которого исходит импульс, имеет в поперечнике не больше нескольких сотен километров. Подобные размеры чрезвычайно малы по сравнению с теми, с которыми мы привыкли иметь дело во Вселенной. Диаметр белых кар ликов составляет несколько десятков тысяч километров; диаметр Земли равен примерно 13 тыс. км. Таким образом, сигналы пульса ров несут сведения о том, насколько малы те области пространства во вселенной, из которых исходит это чрезвычайно интенсивное радиоизлучение

Вскоре из разных мест земного шара стали поступать сообщения о вновь открываемых пульсарах. Сегодня их известно более трех сот. Периоды их лежат в пределах от 0,0016 секунд (у PSR 1937+21) до 4,3 секунды (у PSR 1845-19) . Буквы PSR обозначают слово "пульсар", далее даются прямое восхождение в часах (195h 0) и минутах (375m0) и склонение в градусах (-195о0) . Известно шестнадцать пульсаров, периоды которых менее 12 миллисекунд

Самый далекий пульсар находится на расстоянии 1,3 кпк. Самый близкий пульсар отдален от Земли примерно на 60 пк (в десятки раз дальше, чем ближайшие звезды) , а самый далекий зафиксирован на расстоянии около 25 кпк, т.е. далеко за центром Галактики

Естественно предположить, что пульсары образуются и в других галактиках. Пока открыли по одному короткопериодическому пульсару в Большом и Малом Магеллановых Облаках. Девятнадцать пульсаров найдено в шаровых скоплениях

Хотя по форме отдельные импульсы не вполне повторяют друг друга, период пульсара отличается высоким постоянством. Иногда импульсы пропадают, но после возобновления приема следуют в точности в прежнем ритме

Впоследствии удалось записать отдельные импульсы с более высоким разрешением. При этом выяснилось, что они обладают еще более тонкой структурой, чем показано на рисунке 2. Рекордная быстрота изменения интенсивности составляет 0.8*105-60 секунды

Это означает, что излучение исходит из области, не превышающей 250 метров в поперечнике

Уже в первый год после открытия пульсаров обнаружилось, что период многих из них постепенно увеличивается: со временем пульсары становятся "медленнее". Однако частота следования импульсов изменяется очень незначительно: чтобы период пульсара удвоился должно пройти примерно 10 млн. лет

Что же представляют собой пульсары? Находятся ли они вблизи Солнечной системы или также далеки от нас, как другие галактики? Легко видеть, что пульсары располагаются среди звезд нашего Млечного Пути. Мы уже знаем, что светлая полоса Млечного Пути, которую мы видим на небе, это множество звезд, расположенных в нашей Галактике. Особенно много звезд удается различить, если смотреть по направлению к центру Галактики. Если нанести на кар ту звездного неба все известные пульсары, то они окажутся распределенными среди звезд нашей галактики, преимущественно в районе Млечного Пути

Таким образом, пульсары распределены в пространстве так же, как и звезды: они равномерно размещаются среди звезд. Это значит, что проходит не одна тысяча лет, пока сигналы от нескольких пульсаров достигнут земных радиотелескопов. Соответственно, из лучения пульсаров должно иметь невероятную интенсивность, чтобы его, несмотря на гигантские расстояния, можно было зарегистрировать на Земле. И эта энергия исходит из области, диаметр которой не превышает 250 метров! Как только был открыт первый пульсар и его местонахождения на небесной сфере было точно определено, этот участок неба стали исследовать оптическими телескопами

Звезда, координаты которой попали в область, указанную радиоастрономами, оказалась самой обыкновенной. По всей видимости, она не имела ничего общего с приходящим по этому направлению радиоизлучением. Сам же пульсар оставался невидимым

Осенью 1968 года были обнаружены сигналы с периодом всего лишь 0.03 секунды от пульсара в Крабовидной туманности. Сигналы пульсара шли из облака, образованного остатками Сверхновой 1054 года, отмеченной в китайских и японских летописях. Нельзя ли отождествить с пульсаром какой-либо из звездноподобных объектов Крабовидной туманности?

Как же определить, является ли невидимая звезда источником пульсирующего радиоизлучения или нет? Быть может, оптическое излучение от звезды тоже пульсирует? Однако человеческий глаз неспособен заметить пульсации света от столь слабого источника

Не особенно выручает и фотографические методы: в том месте, где на фотопластинку попадает свет звезды она засвечивается вне зависимости от того, пульсирует попадающий на нее свет или нет

Поэтому, чтобы выявить пульсации видимого излучения звезды, приходится применят специальные методы. С телескопом соединяют телевизионную камеру, и оптическое изображение передается на два телеэкрана. Период импульсов радиоизлучения нам уже известен; в течение одной половины периода изображение поступает на экран А, а в течение другой половины - на экран В. Если видимое излучение объекта пульсирует в том же ритме, что и радиоизлучение, то может в принципе получиться так, что импульс будет всегда наблюдаться на экране А, а на экране В изображение поступает в те промежутки, когда импульса нет. Те источники, свет которых пульсирует с иной периодичностью, будут иметь на обоих эк ранах одинаковую яркость. Остается, таким образом, только сравнить изображения на двух экранах, чтобы выяснить, не изменяется ли видимая яркость какой-либо звезды с тем же периодом, что радиоизлучение

То, что пульсар в Крабовидной туманности видимая звезда удалось обнаружить описанным выше методом. Используемая аппаратура работала по аналогичному принципу, только исследовался не весь участок неба сразу, а каждая звезда по отдельности. Вместо того чтобы наблюдать звезду на нескольких телеэкранах, ее свет направляли поочередно на счетчики фотонов в соответствии с периодом пульсара Крабовидной туманности. Схема подобного измерения иллюстрируется на рис. 6. Если свет звезды не пульсирует, то все счетчики отмечают примерно одинаковое число световых квантов

Если же от звезды идут вспышки с той же периодичностью, что и у сигналов пульсара, то будут срабатывать те счетчики, которые задействованы в момент прихода светового импульса; остальные же датчики ничего не регистрируют. Таким образом, за достаточно долгое время показания счетчиков, на которые приходится "активная" доля периода, будут большими, а показания остальных счетчиков, в которые попадает лишь фоновый свет от темного ночного не ба, остаются почти на нуле. Как говорят, подобная система счетчиков "накапливает" импульс

В ноябре 1968 года два молодых астронома, Уильям Джон Кок и Майкл Дисней, решили провести три ночных дежурства на 90-санти метровом телескопе обсерватории Стюарда в Тусоне (штат Аризона) . Ни тот ни другой не имели еще опыта астрономических наблюдений, и они хотели воспользоваться ночными дежурствами, чтобы познакомиться с работой на телескопе. Они еще размышляли о том, что именно будут наблюдать, когда в начале декабря в журнале "Science" появилось сообщение об открытии пульсара в Крабовидной туманности. Это натолкнуло молодых астрономов на мысль попытаться обнаружить видимое излучение пульсара, тем более, что необходимая для этого электронная аппаратура уже имелась в институте

Дональд Тейлор построил эту аппаратуру для совершенно других целей и воспользовался ею как "приданым", чтобы быть включенным в группу наблюдателей. Итак, в отношении техники все было в порядке. И хотя никаких гарантий успеха не было - никому ведь еще не удавалось отождествить пульсар с видимой звездой, - Кок и Дисней имели возможность познакомиться с работой на телескопе, а Тейлор - испытать свои приборы

К началу января измерительная аппаратура была смонтирована на горе Китт-Пик (в 70 км от города Тусона) , и 11 января те лескоп был впервые направлен на Крабовидную туманность. Для каж дой звезды измерения проводились в течение 5000 периодов пульсара, причем за каждый период световой сигнал распределялся последовательно между несколькими счетчиками. Но ни одна звезда в исследованной области не давала накопления импульса на счетчиках, и 12 января Тейлор вернулся в Тусон. Помогать Коку и Диснею остался Роберт Мак-Каллистер, обслуживающий электронную аппаратуру. 12 января погода начала портиться, а результатов все не было. Еще две ночи, отведенные на это исследование, пропали из-за плохой погоды, и все предприятие, казалось, было обречено на неудачу

Как часто все решает случай! Уильям Тиффт - наблюдатель, чье дежурство начиналось с 15 января, уступил незадачливым новичкам ночи 15 и 16 января, чтобы они смогли вновь попытать счастья. Здесь предоставим слово самому Диснею

"Пятнадцатого днем было облачно, но к вечеру небо проясни лось. Мы начали ровно в 20 часов. Тейлор был еще в Тусоне; Кок и я сменяли друг друга у телескопа, а Мак-Каллистер работал с аппаратурой Тейлора. Для начала мы сделали замер от темного неба, в стороне от звезд. Для следующего измерения мы выбрали звезду, которую Вальтер Бааде обозначил как центральную звезду Крабовидной туманности. Всего тридцать секунд потребовалось для того, чтобы прибор показал нарастающее накопление импульса на счетчиках. Заметен был и слабый вторичный импульс, отстоящий от главного примерно на половину периода; он был значительно шире и не такой высокий. В то время как Мак-Каллистер продолжал спокойно обслуживать аппаратуру, мы с Коком поминутно переходили от истерического возбуждения к глубочайшей депрессии. Действительно ли это пульсар или просто какие-то ложные аппаратурные эффекты?

Ведь частота пульсара была в точности равна половине промышленной частоты переменного тока в США. Но при повторном измерении импульс вновь появился во всей своей красе, и настроение под куполом обсерватории поднялось

В 20.30, через полчаса после начала наблюдений, позвонил Тейлору. Он отнесся к моему сообщению скептически и предложил изменить кое-что в аппаратуре, чтобы устранить возможные ошибки

Лишь на следующую ночь, наблюдая своими глазами за накоплением импульса, он перестал сомневаться

В 1.22 появились облака. Наблюдения были окончены. У трех наблюдателей в обсерватории не было ни малейшего сомнения в том, что им посчастливилось открыть первый оптический пульсар"

Теперь и другие астрономы стали искать подтверждения открытия

После открытия пульсара в Крабовидной туманности стало ясно, что пульсары каким-то образом связаны со взрывами сверхновых

По-видимому, сигналы пульсары идут от того объекта, который ос тается на месте взрыва сверхновой. Это предположение подтверждается и другим пульсаром, излучение которого исходит из области, где наличие газовых масс указывает на происшедший ранее взрыв сверхновой. Этот взрыв, по всей вероятности, произошел очень давно, задолго до аналогичного события в Крабовидной туманности

В созвездии Паруса разлетающиеся газовые массы выглядят уже не как компактное пятно, а как отдельные "нити", имеющие большую протяженность. Период этого пульсара на 0,09 секунды больше периода пульсара в Крабовидной туманности. Это третий из самых быстрых известных пульсаров. (После открытия миллисекундных радиопульсаров его место 5-6) . С самого начала велся поиск этого объекта в видимой области спектра. Но успеха удалось добиться лишь в 1977 году: письмо, полученное 9 февраля редакцией журнала "Nature", в котором говорилось об отождествлении пульсара в созвездии Паруса с видимой звездой, было подписано двенадцатью авторами. Отметим, что наряду с этими двенадцатью учеными, работающими в Англии и Австралии, в предшествующие восемь лет многие астрономы на лучших телескопах мира занимались поисками видимой звезды, "мигающей" в том же ритме, что и пульсар в созвездии Па руса. Так что становится ясно, сколь масштабному всемирному бдению был объявлен отбой этой заметкой. Между прочим, Майкл Дисней, участвовавший в открытии оптического пульсара в Крабовидной туманности, входил и в эту группу ученых

У всех остальных пульсаров нет и следа излучения в видимой области. Это наводит на следующую мысль. Что бы ни представляли собой пульсары, они возникают в результате взрыва сверхновой

Вначале период пульсара мал - еще меньше, чем у пульсара в Крабовидной туманности. Такой пульсар излучает не только в радиодиапазоне, но и в видимой области спектра. С течением времени частота импульсов уменьшается. Не более чем за тысячу лет период пульсара становится равным периоду пульсара в Крабовидной туманности, а затем достигает и периода пульсара в созвездии Паруса

Наряду с увеличением периода ослабевает и интенсивность излучения в видимой области. Когда период пульсара превышает одну секунду, его оптическое излучение давно уже исчезло, и его удается обнаружить лишь по импульсам в радиодиапазоне. Поэтому с видимыми источниками отождествлены лишь два пульсара с самыми коротки ми периодами. Они относятся к самым молодым пульсарам, и вокруг них удается даже различить газовые облака - останки сверхновых

Более старые пульсары давно уже растратили свою способность излучать в видимой области

Но что же такое пульсары? Что остается, когда жизнь звезды заканчивается гигантским взрывом? Мы уже знаем, что пространственная область, из которой исходит излучение пульсара, должна быть очень малой. Какие же процессы могут происходить в столь малой области так быстро и с такой регулярностью, чтобы можно было привлечь их к объяснению феномена пульсара? Быть может, это звезды которые, подобно цефеидам, периодически "раздуваются" и вновь сжимаются? Но в таком случае плотность звездного вещества должна быть очень высокой, так как лишь тогда период осцилляций может быть достаточно мало (вспомним, что период изменения блеска цефеид составляет несколько суток) . Нас же интересуют объекты, которые способны осциллировать с периодом сотые доли секунды. Даже самые плотные из звезд, белые карлики, не способны совершать столь быстрые колебания. Возникает вопрос: могут ли звезды иметь еще более высокую плотность, оставляющие по плотности далеко позади белые карлики с их тонными на кубический сантиметр?

Первое соображение на этот счет высказали советский физик и два астронома из Пасадены задолго до обнаружения пульсаров. Лев Ландау (1908-1968) в 1932 году доказал, что вещество с еще более высокой плотностью может находиться в равновесии с гравитационными силами. Тогда же в Пасадене на самом большом по тем временам телескопе в мире работал выходец из Германии Вальтер Бааде

Он был, несомненно, одним из лучших астрономов-наблюдателей на шего столетия. Там же работал и швейцарец Фриц Цвикки, человек столь же напористый, сколь и неистощимый на выдумки. Еще в 1934 году эти два ученых утверждали, что смогут существовать звезды с исключительно высокой плотностью - как предсказывал и Ландау, звезды, состоящие почти полностью из одних нейтронов. В 1939 году физики Роберт Оппенгеймер и Джордж Волков поместили в американском физическом журнале "Physical Review" статью о нейтронных звездах. Имя одного из авторов этой статьи стало известно во всем мире задолго до того, как астрономы всерьез занялись нейтронными звездами: Оппенгеймер сыграл ведущую роль в создании американской атомной бомбы

Оппенгеймер и Волков доказали, что звездное вещество, в ко тором электроны и протоны соединились в нейтроны, может удерживаться в виде шара с собственными гравитационными силами. Зная свойства нейтронного вещества, можно осуществить теоретические расчеты нейтронных звезд. Анализ математической модели нейтрон ной звезды показывает, что плотность ее должна быть очень велика: масса, равная солнечной, заключена в объеме шара с поперечником 30 км. - в кубическом сантиметре содержится миллиарды тонн нейтронной материи. Но нейтронные звезды, если заставить их осциллировать, будут делать это гораздо быстрее, чем пульсары. Поэтому в качестве объяснения периода пульсаров объемная осцилляция нейтронных звезд не происходит

Итак, мы вновь вернулись к тому, с чего начали. Мы искали плотные звездоподобные объекты, которые могли бы совершать достаточно быстрые колебания, - и белые карлики оказались слишком медленными, а гипотетические нейтронные звезды слишком быстрыми

Об открытии пульсаров Томас Голд узнал, будучи преподавателем Корнельского университета в городе Итака (штат Нью-Йорк)

И вот, в то время как в научных журналах одна за другой публиковались скороспелые попытки объяснить существование пульсаров (сводившиеся, главным образом, к попыткам спасти гипотезу пульсирующих звезд) , мысль Томаса Голда пошла в совершенно ином направлении

К регулярным периодическим движениям небесных тел относятся и собственное вращение объекта. Солнце, например, совершает полный оборот вокруг своей оси за 27 суток; существуют звезды, которые вращаются гораздо быстрее. Не связано ли строгая периодичность пульсаров с какими-либо вращательным движением? Тогда объект должен был бы совершать полный оборот менее чем за секунду - в случае пульсара в Крабовидной туманности тридцать оборотов в секунду! Звезда, однако не может вращаться сколь угодно быстро, поскольку при слишком высокой скорости она будет разрушена центробежными силами. Предельная скорость вращения звезды определяется величиной гравитации на поверхности звезды; для белого карлика этот предел равен примерно одному обороту в секунду. Если бы скорость вращения белого карлика соответствовала периоду пульсара в Крабовидной туманности, то он не выдержал бы действия центробежных сил. С большей скоростью могла бы вращаться лишь более плотная звезда

Это возвращает нас к нейтронным звездам: вероятно, периодические "вспышки" пульсара объясняются вращением нейтронной звезды. Для этого нейтронная звезда должна совершать оборот вокруг своей оси за доли секунды, и это вполне возможно: сила тяжести на поверхности нейтронной звезды достаточно велика. Нейтронная звезда может вращаться гораздо быстрее

Гипотезу Томаса Голда, согласно которой пульсары являются вращающимися нейтронными звездами, астрофизики сразу же приняли как наиболее правдоподобную. Вековое увеличение периода пульсара объяснялось бы тогда постепенным замедлением вращения нейтронной звезды. Это вполне естественно: можно предположить, что энергия, посылаемая пульсаром в виде электромагнитного излучения, черпается за счет энергии вращения нейтронной звезды. Вращение могло бы постепенно замедляться только из-за потерь энергии на излучение, хотя в действительности торможение сильнее

Ученые пришли к выводу, что энергия, высвобожденная в результате замедления вращения пульсара Крабовидной туманности, расходуется не только на излучение самого пульсара, но и на из лучение всей туманности. Этим разрешается еще одно затруднение

В то время как свечение обычных туманностей - например, планетарной туманности или туманности Ориона - обусловлена излучением атомов, свечение Крабовидной туманности имеет совершенно иное происхождение. Электроны, обладающие в результате взрыва сверхновой огромной энергией, движутся здесь со скоростью, близ кой к скорости света. В магнитном поле туманности электроны движутся по круговым орбитам, излучая при этом свет. Оставался не решенным вопрос, почему эти электроны с 1054 года движутся все также быстро, почему они не замедлились, теряя свою энергию на излучение. Со временем интенсивность излучения должна ослабевать, и свечение Крабовидной туманности меркнуть. По-видимому, электроны пополняют свою энергию за счет какого-то внешнего источника. Теперь этот источник был найден. Если Томас Голд прав, то в Крабовидной туманности находится вращающаяся нейтронная звезда, которая, возможно, через свое магнитное поле передает энергию окружающему газу. Как гигантский пропеллер, вращается нейтронная звезда в туманности, обеспечивая электронам высокую скорость, а Крабовидной туманности - большую яркость. Запаса энергии вращения нейтронной звезды хватит еще на много тысячелетий

Итак, мы нашли механизм, объясняющий регулярность посылаемых пульсарами импульсов. Однако нужно еще понять, как именно возникает радиоизлучение. Поскольку речь идет не о непрерывной волне, а об импульсе, при котором в течение большей части периода энергия равна нулю и лишь кратковременно энергия очень велика, можно предположить, что звезда посылает излучение в определенном направлении и мы регистрируем его в тот момент, когда луч вращающейся звезды-прожектора "чиркает" по Земле - точно так же, как с корабля видят луч вращающегося фонаря на маяке

По всей видимости, нейтронная звезда обладает магнитным полем, подобно Земле, но значительно более сильным. Предположим, что магнитная ось звезды не совпадает, как и у Земли, с ее осью вращения. При вращении нейтронной звезды магнитное поле так же вращается, и поучается картина, показанная на рисунке 8: на поверхности вращающейся нейтронной звезды, обладающей магнитным полем, где нейтроны вновь превращаются в протоны и электроны, господствуют мощные электрические силы, под действием которых заряженные частицы уносятся прочь от звезды. Частицы движутся вдоль магнитных силовых линий в пространстве. Их энергии достаточно для того, чтобы Крабовидная туманность и сегодня, через тысячу лет после своего возникновения, могла светиться. Движение заряженных частиц поперек магнитных силовых линий затруднено, поэтому они покидают нейтронную звезды, главным образом в области ее магнитных полюсов, уходя вдоль искривленных силовых линий

Электроны, как самые легкие частицы покидают звезду с самой большой скоростью, близ кой, по всей видимости, к скорости света. двигаясь со столь высокой скоростью по искривленной траектории, электрон излучает энергию, причем не во все стороны, а преимущественно в направлении своего движения. Таким образом, излучение звезды в целом направлено вдоль выходящих из звезды силовых линий магнитного поля. А так как магнитное поле вращается вместе со звездой, вращаются и конические пучки выходящего излучения. Удаленный наблюдатель видит их в тот момент, когда он попадает в один из этих двух конусов; для него нейтронная звезда будет вспыхивать с частотой, соответствующей скорости ее вращения. Многие астрофизики сегодня считают, что эта модель, напоминающая вращающийся прожектор морского маяка, во многом верна

Весной 1969 года две обсерватории независимо одна от другой обнаружили, что медленное, но неуклонное нарастание периода пульсара нарушилось и интервал между двумя соседними импульсами сократился (рисунок 9) . Затем период вновь стал увеличиваться с прежней скоростью. Мы приняли, что пульсар является вращающейся нейтронной звездой, вращение которой постепенно замедляется из-за передачи энергии в окружающею среду. Что же могло заставить звезду ускорить свое вращение?

Изменение периода происходит скачкообразно. Физики-ядерщики, лучше знакомые с нейтронами, чем астрофизики, высказали такое предположение. На поверхности нейтронной звезды образовались прочные корки - "плиты", которые при охлаждении нейтронной звезды, оставшейся после взрыва сверхновой, отрываются одна за другой. В результате подобных сдвигов и оползней скорость вращения нейтронной звезды может увеличиваться. Объясняет ли это резкое сокращение периода, которое с тех пор наблюдалось уже неодноднократно? Глобальные движения земной коры действительно сказываются на скорости вращения Земли и, следовательно, на продолжительности суток. Наблюдается ли нечто подобное и у пульсаров?

Не являются ли наблюдаемые скачки их периода свидетельством происходящих в них катаклизмов?

В последнее десятилетие значительные успехи достигнуты в но вой области наблюдательной астрономии - так называемой гамма-астрономии. Гамма-излучение можно рассматривать как свет с очень малой длиной волны, еще более короткой, чем у рентгеновского излучения. Гамма-излучение обладает очень высокой энергией: отдельный гамма-квант несет примерно в миллион раз больше энергии, чем квант видимого света. Однако гамма-излучение, как и рентгеновское, почти не проходит сквозь атмосферу Земли, поэтому исследование приходящих из Вселенной гамма-лучей началось лишь после того, как с помощью ракет и спутников наблюдения стали осуществляться из космоса. К наиболее впечатляющим открытиям в области гамма-астрономии относится тот факт, что многие пульсары посылают импульсы и в гамма-диапазоне. Благодаря огромной энергии гамма-квантов складывается впечатление, что именно гамма-излучение является для пульсаров основным, в то время как радиоизлучение, по которому пульсары были впервые обнаружены, оказывается скорее побочным эффектом, который можно уподобить звуку, сопровождающему разрыв снаряда. Гамма-импульсы идут в том же ритме, что и радиоимпульсы, но не совпадают с ними. Явления, связанные с гамма-излучением пульсаров, до сих пор не поняты

С точки зрения астрономов пульсары представляют еще одну сложность. В настоящее время уже известно такое количество пульсаров, что можно предположить существование в одной только нашей Галактике около миллиона активно действующих пульсаров. С другой стороны, несколько последних десятилетий ведутся наблюдения уда ленных галактик с целью установить, какое количество взрывов сверхновых происходит в среднем за столетие. Это позволяет сделать вывод о том, сколько нейтронных звезд возникло с древнейших времен в нашем Млечном Пути. Оказывается, что число пульсаров значительно превосходит то количество нейтронных звезд, которое могло образоваться в результате взрывов сверхновых. Значит ли это, что пульсары могут возникать и иным путем? Быть может, не которые пульсары образуются не в результате взрывов звезд, а в ходе менее эффектных, но более упорядоченных и мирных процессов?

В ноябре 1982 года астрономическая общественность была взбудоражена сообщением о том, что пять астрономов с помощью радио телескопа в Пуэрто-Рико открыли пульсар, который побил рекорд пульсара в Крабовидной туманности. каждую секунду он посылает 642 импульса. Это означает, что нейтронная звезда вращается со скоростью 600 оборотов в секунду. Соответственно гравитация на поверхности должна быть очень велика, чтобы звезду не разорвали центробежные силы. Позднее были открыты и другие миллисекундные пульсары

Группа астрономов, возглавляемая Э. Дж. Лайном (Великобритания) , обнаружила вблизи центра Млечного Пути быстровращающуюся нейтронную звезду. Ее пульсирующее радиоизлучение достигает Землю 86 раз в секунду. Пульсару, находящемуся в пределах шарового скопления Терциан 5, присвоено наименование PSR 1744-24 А. По несколько раз в неделю радиосигнал из этого источника исчезает на шесть часов. Это второй, ставший известным науке двойной пульсар. Первый из них, открытый двумя годами ранее, находится примерно в трех тысячах световых лет от нас. Его период равен около 1,6 мс. Отличительная особенность этих двух пульсаров: оба они, по-видимому, "пожирают" своих невидимых для нас спутников

Очевидно, пульсары излучают такое количество энергии, что ее хватает на разогрев поверхности звезды-спутника. При этом образуется вихрь, способный вызывать "затмение" радиоизлучения быстровращающегося пульсара. Масса же спутника при этом уменьшается

Период колебания излучения "новичка" указывает на то, что он находится на иной (вероятно, более ранней) стадии своего развития, чем первый двойной пульсар. Скорее всего, спутник достаточно велик, чтобы пульсар мог временами "выхватывать" из него большое коли Как считают крупные ученые, характерная черта кибернетического подхода — тенденция к упрощению (аппроксимации) сложных объектов с целью изучения их основных параметров и раскрытия на этой основе их глубокой сущности. Основной путь современной научной характеристики таких объектов связан с построением моделей для них с последующим увеличением их информационной содержательности. Процесс совершенствования моделей полезно рассматривать как процесс их постепенного обогащения или проработок. Начинают обычно с самых простых моделей. В настоящее время наука и практика располагают самыми разнообразными по характеру и предназначению методами и формами моделирования. В данном случае нас интересуют те модели, которые непосредственно обслуживают управление, создают предпосылки к его оптимизации. Для управления сложными системами следует выработать качественно новые модели, но полезно использовать и семантические и прагматические отношения. Важное место в управлении социальными системами в настоящее время занимает прогнозирование. Всякое, даже элементарное решение предполагает определенное предвидение, поскольку этим решением проектируется действие в будущем. Выборка эффективных решений, особенно глобального и стратегического характера, требует верно предвидеть главные направления развития в данной сфере общества в целом и действовать сообразно с их закономерностями. При прочих равных условиях чем больше вероятность появления в будущем определенного события, тем, естественно, солиднее база для принятия решения. Только на основе верных, научно обоснованных прогнозов можно действовать с перспективой, и результаты деятельности субъективного фактора совпадут в наибольшей степени с замыслом государственной политики, с преследуемыми субъектом управления целями. Прогноз как форма социального предвидения описывает возможную степень достижения тех или иных целей в зависимости от способа наших действий. При этом он может и должен охватывать как управляемые, так и относительно не управляемые (стихийно протекающие) процессы. Прогнозы выполняют ряд функций: ориентировочную, нормативную, предупредительную и др. Они нацеливают органы управления на решение перспективных проблем, определяют условия, при которых можно реализовать прогностическую модель, предупреждают о возможных отклонениях от нее. Таким образом, прогнозы выступают как необходимый элемент всего процесса управления, содействуют его оптимизации. Прогнозирование, как и моделирование, — сложная научно-исследовательская и логико-конструктивная деятельность. Она должна быть организована так, чтобы давать необходимую информацию при подготовке управленческих решений. Значение прогнозов в управлении социальными процессами заключается прежде всего в том, что они выступают предплановыми документами. Задачи прогнозирования — не констатировать возможное будущее, а помогать плановой деятельности, содействовать ее оптимизации. Следует иметь в виду, что для выполнения этой функции необходима серьезная теоретико-прикладная работа, посредством которой знание, содержащееся в прогнозе, трансформируется так, что может служить основой оптимального планирования. В современных условиях в связи с возросшей сложностью управленческого процесса формируется специфический вид труда, обслуживающего управление, — консультативный труд и соответствующий метод управления. В развитых капиталистических странах функционирует множество обществ, бюро, организаций, которые вырабатывают экспертные оценки и дают консультации руководителям. Крупные ученые выступают за создание системы коммуникаций между специалистами по управлению и руководством организаций. В структуру управления компаниями