Биореакторы (ферментаторы)
Белорусский Государственный Университет
Биологический факультет
Биореакторы
Рефератстудента 2-го курса
Бабицкого Мирослава
Минск 2003 г.
Биореакторы (ферментаторы) составляют основу биотехнологического производства. Масса аппаратов, используемых, например, в микробной биотехнологии, различна, и требования здесь определяются большей частью экономическими соображениями. Применительно к ферментаторам различают следующие типы их: лабораторные емкостью 0,5тАФ100 л, пилотные емкостью 100лтАФ10 м3, промышленные емкостью 10тАФ100 м3 и более.
При масштабировании добиваются соответствия важнейших характеристик процесса, а не сохранения принципа конструкции.
Применяемое в биотехнологии оборудование должно вносить определенную долю эстетичности в интерьер цеха или отделения ("ласкать глаз"). В ходе его эксплуатации и вне ее оборудование должно быть легко доступным, содержащимся и функционирующим в определенных рамках требований гигиены и санитарии.
В случае замены каких-либо частей или деталей в аппарате, смазки и чистки узлов при текущем ремонте, и т. д., загрязнения не должны попадать внутрь биореакторов, в материальные поточные коммуникационные линии, в конечные продукты.
Техническую вооруженность биотехнологических процессов целесообразно условно ограничить аппаратурным оформлением производств, базирующихся на культивировании: 1) бактерий и грибов, 2) клеток и тканей растений, 3) клеток и тканей животных организмов и человека. Такое подразделение обусловлено тем, что бактерии и грибы в большинстве своем выращивают в однотипных биореакторах, имеющих почти однотипную обвязку, в которую входят: ферментатор, многокорпусный вентиль стерильный (для подачи питательной среды, посевного материала, подпитки и пр.), системы регулирования рН, 1В°, подачи иеногасителя, система контроля расхода воздуха, пробоотборник, электродвигатель.
Растительные клетки, имеющие клеточную стенку (также как бактерии и грибы) растут, размножаются и развиваются значительно дольше, чем большинство бактерий и грибов, а это вносит определенные коррективы в аппаратурное оформление соответствующих биотехнологических процессов.
Культуры клеток животных и человека, не имеющие клеточных стенок, являются более ранимыми и требовательными к условиям своего существования, чем клетки других эукариот и прокариот. Поэтому оборудование для них можно отнести к разряду "тихоходного", обеспечивающего нежное обращение с биообъектами.
Несомненно, в отдельных случаях допустимы исключения, например, когда возможно культивирование в глубинных условиях некоторых растительных клеток (суспензионная культура женьшеня), используя ферментационное оборудование, рассчитанное на выращивание, например, бактерий или грибов.
К. Шюгерль в 1982 г. предложил подразделить биореакторы на 3 основные группы согласно способу потребления энергии для перемешивания и диспергирования г стерильного воздуха (газа):
- в биореакторах I типа энергия расходуется на механическое
движение внутренних устройств;
- в биореакторах II типа энергия расходуется на работу
внешнего насоса, обеспечивающего рециркуляцию жидкости
и/или газа;
- в биореакторах III типа энергия расходуется на сжатие и подачу газа в культуралъную жидкость.
Биореакторы для аэробных процессов: с расходом энергии на механическое движение внутренних устройств а тАФ 1, 2. 3; с расходом энергии на работу насоса, обеспечивающего рециркуляцию культуральной жидкости б тАФ 4; с расходом энергии на сжатие и подачу газовой фазы в тАФ 5 (г тАФ газ. ж тАФ жидкая фаза, д тАФ двигатель).
Человек с древнейших времен эмпирически применял дрожжевые организмы в примитивных по аппаратурному оформлению биотехнологических процессах (хлебопечение, виноделие и пр.). Развитие промышленности антибиотиков продвинуло далеко вперед проблему создания специальной аппаратуры для культивирования микробов тАФ продуцентов БАВ (аминокислот, антибиотиков, полисахаридов, витаминов, ферментов и других соединений). Были предложены различного типа биореакторы для выращивания микроорганизмов, однако все конструкции ферментаторов (ферментеров) оставались в основном сходными по большинству параметров и, усредненно, их можно подразделить на 2 типа: без подводки стерильного воздуха (для анаэробов) и с подводкой его (для аэробов). Аэрируемые биореакторы могут быть с мешалками и без них.
Ферментатор периодического действия (1 тАФ турбинная трсхярусная мешалка, 2 тАФ охлаждающий змеевик. 3 тАФ секционная рубашка. 4 тАФ отражательная перегородка. 5 - барботер. П-пар); IтАФXI тАФ материальные и вспомогательные трубопроводы с запорно-регулирующими устройствами (I тАФ посевная линия. I тАФподача стерильного сжатого воздуха. III тАФ подача пара, IV тАФ удаление отработанного воздуха. V тАФ загрузочная линия, VI тАФ линия введения добавок, VII подача пеногаситсля, VIII тАФ подача моющего раствора. IX тАФ пробоотборник. X -выдача продукта, XI тАФ выдача в канализацию через нижний спуск).
В последние годы апробированы мембранные биореакторы, биореакторы с полыми волокнами и некоторые другие.
При расчете и конструировании биореакторов необходимо учитывать время протекания различных биологических процессов у представителей различных групп организмов.
Некоторые технические характеристики промышленного биореактора в сравнении с пилотным и лабораторным приведены в таблице:
Характеристика |
Показатели для аппаратов |
||
промышленного на 100 м3 |
пилотного на 150 л |
лабораторного на 10 л |
|
Внутренний диаметр, мм |
3600 |
420 |
|
Высота, мм |
15715 |
1140 |
|
Рабочий объем, л |
1 |
100 |
2-6 |
Диаметр турбин, мм |
900 |
140 |
|
Число турбин |
1-2 (диаметр |
3 |
2 |
рабочего колеса |
|||
960 мм) |
|||
Число отбойников |
4 |
4 |
В± |
Частота вращения вала мешалки, об/мин |
173 |
125-990 |
200-1500 |
Мощность |
|||
электродвигателя |
|||
мешалки, кВт |
160 |
2,2 |
Не более 2 |
Мощность |
|||
электродвигателя |
|||
пеногасителя, кВт |
4 |
0,73 |
|
Максимальное |
|||
количество |
|||
отработанного |
|||
пеногасителем газа. |
|||
м3/мин |
100-110 |
0,3 |
|
Частота вращения вала |
|||
пеногасителя. об/мин |
725 |
3000 |
Размеры ферментаторов определяются соотношением внешнего диаметра к высоте, который варьирует обычно в пределах от 1:2 до 1:6. Почти универсальными и чаще используемыми являются ферментаторы для анаэробных и аэробных процессов. Эти ферментаторы в свою очередь классифицируют по способу ввода в аппарат энергии для перемешивания газовой фазой (ФГ), жидкой фазой (ФЖ), газовой и жидкой фазами (ФЖГ).
Ферментаторы |
Характеристика конструкции аппарата |
Тип аппарата |
ФГ с подводом энергии газовой фазой |
Простота конструктивного осрормления и высокая надежность в связи с отсутствием движущихся узлов и деталей |
Барботажный. барботажно-эрлифтный. колоночный (колонный), форсуночный |
ФЖ с подводом энергии жидкой фазой |
Обычно энергия передастся жидкой фазе самовсасынающсй мешалкой или насосом |
Эжекционный. с циркуляционным контуром, с нсасывающей мешалкой |
ФЖГ (комбинированные) |
Основным конструктивным элементом является перемешивающее устройство, обеспечивающее высокую интенсивность растворения кислорода и высокую степень диспергирования газа. В то же время энергия газовой фазой выводится обычным способом |
Барботажный с механическим перемешиванием |
С использованием указанных выше классификаций удается разработать единые методы инженерных расчетов основных конструктивных элементов и режимов работы ферментаторов.
Ферментаторы указанных трех групп имеют большое количество общих элементов. Различие же состоит в конструкциях аэрирующих и перемешивающих устройств. Примером конструктивного оформления ферментатора группы ФГ может быть аппарат с эрлифтом вместимостью 63 м3. В аппарате отсутствует механическое перемешивание, поэтому проще поддерживать асептические условия. Воздух для аэрации среды подастся по трубе, расположенной вертикально в ферментаторе. Аэратор, конструкция которого обеспечивает вихревое движение выходящего воздуха, расположен в нижней части диффузора и насыщает питательную среду воздухом. Газожидкостная смесь поднимается по диффузору и перемешивается через его верхние края. В этой же зоне часть воздуха уходит из аппарата, и более плотная среда опускается вниз в кольцевом пространстве между корпусом ферментатора и диффузором. Так происходит многократная циркуляция среды в ферментаторе. Для отвода биологического тепла внутри ферментатора установлен змеевик, а также аппарат снабжен секционной рубашкой. Недостатком этих аппаратов является низкая интенсивность массообмсна по кислороду. Известны ферментаторы этого типа объемом 25, 49, 63 и 200м3.
Ферментатор с эрлифтом: 1 тАФ штуцер для слива, 2 тАФ аэратор, 3 тАФ змеевик, 4 тАФ штуцер для загрузки. 5 тАФ люк, 6 тАФ корпус аппарата, 7 тАФ диффузор, 8 тАФ рубашка, 9 тАФ труба передавливания.
Широкое распространение в производстве кормового белка получили ферментаторы с самовсасывающими мешалками (рис. 91). Это ферментаторы из группы ФЖ. Для выращивания чистой культуры дрожжей созданы ферментаторы вместимостью 0.32, 3.2 и 50 м3. Ферментатор представляет собой вертикальный цилиндрический аппарат, снабженный циркуляционными, теплообменными и аэрирующими устройствами. В качестве циркуляционных устройств использованы системы направляющих диффузоров, разграничивающих восходящие и нисходящие потоки. Теплообменные устройства выполнены в виде трубок, установленных в трубных решетках диффузоров.
Ферментатор с самовсасывающей мешалкой непрерывного действия: 1 тАФ корпус, 2 тАФ диффузор, 3 тАФ самовсасывающая мешалка. 4 тАФ теплообменник, 5 тАФ фильтр.
На предприятиях микробиологической промышленности при выращивании дрожжей в средах с жидкими парафинами также применяют ферментаторы с самовсасывающими мешалками непрерывного действия. Емкость его 800 м3 (рабочий объем 320 м3) разделена на 12 секций. Ферментационная среда последовательно проходит все секции, и из последней выходит культуралъпая жидкость с минимальным содержанием н-парафинов и максимальной концентрацией биомассы. В каждой секции установлено перемешивающее и аэрирующее устройство и змеевики для отвода тепла. Ферментаторы периодического действия из групп ФЖГ применяют с 1944 г. в
промышленности для получения антибиотиков, витаминов и других биологически активных веществ (см. рис. 88). Его конструкция обеспечивает стерильность ферментации в течение длительного времени (нескольких суток) при оптимальных условиях для роста и жизнедеятельности продуцента. Ферментаторы такой конструкции изготавливают на 1,25; 2,0; 2,5; 3,2; 4,0; 5,0; 6,3; 10,0; 16,0; 20,0; 32,0; 50,0; 63,0; 100,0 и 160,0 м3. Как видно из рисунка, это цилиндрический вертикальный аппарат со сферическим днищем, снабженный аэрирующим, перемешивающим и теплопередающим устройствами. Воздух для аэрации поступает в ферментатор через барботер, установленный под нижним ярусом мешалки. С точки зрения эффективности диспергирования воздуха конструкция барботера принципиальной роли не играет при наличии мешалки, однако, с точки зрения эксплуатации, наиболее удобным является квадратный барботер, который получил наибольшее распространение. Отверстия в барботере направлены вниз, во избежание засорения биообъектами. Общая площадь отверстий должна быть на 25% больше площади поперечного сечения трубопровода, подводящего воздух. Барботер по своим размерам должен соответствовать диаметру мешалки, чтобы выходящий из него воздух попадал в зону ее действия.
Эффективность работы ферментатора определяется прежде всего необходимой интенсивностью перемешивания. Перемешивающие устройства служат для сохранения равномерного температурного поля по всему объему аппарата, своевременного подвода продуктов питания к клеткам и отвода от них продуктов метаболизма, а также интенсификации массопередачи кислорода. Для создания в ферментаторе условий "полного отражения", во избежание образования вращательного контура, который резко снижает интенсивность перемешивания, в аппарате устанавливают отражательные перегородки (отбойники). Ширина их составляет (0,1тАФ0,12) dM. Обычно рекомендуют устанавливать 4 отражательных перегородки, несколько отступая от стенок ферментатора.
Важным элементом в конструкции ферментатора являются теплообменные устройства. Применение высокопродуктивных штаммов биообъектов, концентрированных питательных сред, высокий удельный расход мощности на перемешивание тАФ все эти факторы сказываются на существенном возрастании тепловыделений, и для отвода тепла в ферментаторе устанавливают наружные и внутренние теплообменные устройства. Промышленные ферментаторы, как правило, имеют секционные рубашки, а внутри аппарата тАФ четыре змеевика.
Разработчики аппаратуры в нашей стране и за рубежом постоянно совершенствуют конструкции биореакторов. Так, например, фирма New Brunswick Scientific Co., Inc. (США) предложила следующие типы ферментаторов: Био-Фло III тАФ для периодического и непрерывного культивирования микробных, животных и растительных клеток, совмещенный с микропроцессором и персональным компьютером; Микрос I тАФ для культивирования микроорганизмов (совмещен с микропроцессором) и промышленные ферментаторы емкостью от 40 до 4000 литров и более (совмещены с микропроцессорами). В Датской мультинациональной компании Gist-Brocades в 1987 г. сконструирован и изготовлен самый большой промышленный ферментатор для производства пенициллина (200 м3).
Вместе с этим смотрят:
БиоритмологияБиоритмы
Биосфера
Биотехнология