Функции белков в организме

Реферат

На тему: ВлФункции белков в организмеВ»

Выполнил: Кирпиченко Д. А.

Проверила: Гоморова Р. А.

Ангарск 2003

СОДЕРЖАНИЕ

Введение

2

Строение белка и его функции

2

Функции белков в организме.

4

Классификация белков

8

Обмен белков

8

Список литературы

        10

ВВЕДЕНИЕ

Нормальная деятельность организма возможна при непрерывном поступлении пищи. Входящие в состав пищи жиры, белки, углеводы, минеральные соли, вода и витамины необходимы для жизненных процессов организма.

Питательные вещества, являются источником энергии, покрывающей расходы организма, и строительным материалом, который используется в процессе роста организма и воспроизведения новых клеток, замещающих отмирающие. Но питательные вещества в том виде, в каком они употребляются в пищу, не могут всасываться и быть использованными организмом. Только вода, минеральные соли, и витамины всасываются и усваиваются в том виде, в каком они поступают.

Питательными веществами называются белки, жиры и углеводы. Эти вещества являются необходимыми составными частями пищи. В пищеварительном тракте белки, жиры и углеводы подвергаются как физическим воздействиям (измельчаются и перетираются), так и химическим изменениям, которые происходят под влиянием особых веществ - ферментов, содержащихся в соках пищеварительных желёз. Под влиянием пищеварительных соков питательные вещества расщепляются на более простые, которые всасываются и усваиваются организмом.

Строение белка и его функции

"Во всех растениях и животных присутствует некое вещество, которое без сомнения является, наиболее важным из всех известных веществ живой природы и без которого жизнь была бы на нашей планете невозможна. Это вещество я наименовал - протеин". Так писал еще в 1838 году голландский биохимик Жерар Мюльдер, который впервые открыл существование в природе белковых тел и сформулировал свою теорию протеина. Слово "протеин" (белок) происходит от греческого слова "протейос", что означает  "занимающий первое место". И в самом деле, все живое на земле содержит белки. Они составляют около 50% сухого веса тела всех организмов. У вирусов содержание белков колеблется в пределах от 45 до 95%.

Белки являются одними из четырех основных органических веществ живой материи (белки, нуклеиновые кислоты, углеводы, жиры), но по своему значению и биологическим функциям они занимают в ней особое место. Около 30% всех белков человеческого тела находится в мышцах, около 20% - в костях и сухожилиях и около 10% - в коже. Но наиболее важными белками всех организмов являются ферменты, которые, хотя и присутствуют в их теле и в каждой клетке тела в малом количестве, тем не менее управляют рядом существенно важных для жизни химических реакций. Все процессы, происходящие в организме: переваривание пищи, окислительные реакции, активность желез внутренней секреции, мышечная деятельность и работа мозга регулируется ферментами. Разнообразие ферментов в теле организмов огромно. Даже в маленькой бактерии их насчитываются многие сотни.

Белки, или, как их иначе называют, протеины, имеют очень сложное строение и являются наиболее сложными из питательных веществ. Белки - обязательная составная часть всех живых клеток. В состав белков входят: углерод, водород, кислород, азот, сера и иногда фосфор. Наиболее характерно для белка наличие в его молекуле азота. Другие питательные вещества азота не содержат. Поэтому белок называют азотосодержащим веществом.

Основные азотосодержащие вещества, из которых состоят белки, - это аминокислоты. Количество аминокислот невелико - их известно только 28. Все громадное разнообразие содержащихся в природе белков представляет собой различное сочетание известных аминокислот. От их сочетания зависят свойства и качества белков.

Белки играют исключительно важную роль в живой природе. Жизнь немыслима без различных по строению и функциям белков. Белки - это биополимеры сложного строения, макВнромолекулы (протеины)  которых, состоят из остатков аминокислот, соединенВнных между собой амидной (пептидной) связью. Кроме длинных полимерных цепей, построенных из остатков аминокислот (полипептидных цепей), в макромолекулу белка могут входить также остатВнки или молекулы других органических соединений. На одном кольце каждой пептидной цепи имеется свободная или ацилированная аминогруппа, на другом - свободная или амидированная карбоксильная группа.

Конец цепи с аминогруппой называется М-концом, конец цепи с карбоксильной группой тАФ С-концом пептидной цепи. Между СО - групВнпой одной пептидной группировки и NH - группой другой пептидной группировки могут легко образовываться водородные связи.

Группы, входящие в состав радикала R аминокислот, могут вступать во взаВнимодействие друг с другом, с посторонними веществами и с соседВнними белковыми и иными молекулами, образуя сложные и разнообВнразные структуры.

В макромолекулу белка вхоВндит одна или несколько пептидВнных цепей, связанных друг с другом поперечными химическиВнми связями, чаще всего через сеВнру (дисульфидные мостики, обраВнзуемые   остатками   цистеина). Химическую структуру пептидных цепей принято назыВнвать первичной структуВнрой белка или секвенцией.

Для построения пространВнственной структуры белВнка пептидные цепи должны приВннять определенную, свойственную данному белку конфигурацию, коВнторая закрепляется водородными связями, возникающими между пептидными группировками отВндельных участков молекулярной цепи. По мере образования водоВнродных связей пептидные цепи закручиваются в спирали, стремясь к образованию максимальВнного числа водородных связей и соответственно к энергетически наиболее выгодной конфигурации.

Впервые таВнкая структура на основе рентгеноструктурного анализа была обнаружена при изучении главного белка волос и шерВнсти-кератина Полингом американским физиком и химиком. Ее назВнвали А-структурой или А-спиралью. На один виток спирали приходится по 3,6-3,7 остатков аминокислот. РасВнстояние между витками около 0,54 миллиардной доле  метра. Строение спирали стабилизируется внутВнримолекулярными водородными связями.

При растяжении спираль макВнромолекулы белка превращается в друВнгую структуру, напоминающую линейВнную.

Но образованию правильной спирали часто мешают силы отталкиваВнния или притяжения, возникающие между группами аминокислот, или стерические препятствия, например, за счет образования пирролидиновых колец пролина и оксипролина, которые заставляют пептидную цепь резко изгибаться и препятствуют образованию спирали на некоторых её участках. Далее отдельные участки макромолекулы белка ориентируются в пространстве, принимая в некоторых случаях достаточно вытянутую форму, а иногда сильноизогнутую, свернутую пространственную структуру.

Пространственная структура закреплена вследствие взаимодействия радикалов R и аминокислот с образованием дисульфидных мостиков, водородных связей, ионных пар или других химических либо физических связей. Именно пространственная структура белка определяет химиВнческие и биологические свойства белков.

В зависимости от пространственной структуры все белки делятся на два больших класса: фибриллярные (они используются природой как структурный материал) и глобулярные (ферменты, антитела, некоторые гормоны и др.).

Свойства белка могут сильно изменяться при заВнмене одной аминокислоты другой. Это объясняется изменением конВнфигураций пептидных цепей и условий образования пространственВнной структуры белка, которая в конечном счете определяет его функВнции в организме.

Число аминокислотных остатков, входящих в молекулы отдельных белков, весьма различно: в инсулине 51, в миоглобине - около 140. Поэтому и относительная молекулярная масса белков колеблется в очень широких пределах - от 10 тысяч до многих миллионов На основе определения относительной молекулярной массы и элементарного анализа установлена эмпирическая формула белковой молекулы - гемоглобина крови (C738H1166O208S2Fe)4 Меньшая молекулярная масса может быть у простейших ферментов и некоторых гормонов белковой природы. Например, молекулярная масса гормона инсулина около 6500, а белка вируса гриппа тАФ 320 000 000. Вещества белковой природы (состоящие из остатков аминокислот, соединенных между собой пептидной связью), имеюВнщие относительно меньшую молекулярную массу и меньшую стеВнпень пространственной организации макромолекулы, называются полипептидами. Провести резкую границу между белками и полипептидами трудно. В большинстве случаев белки отличаются от других природных полимеров (каучука, крахмала, целлюлозы), тем, что чистый индиВнвидуальный белок содержит только молекулы одинакового строения и массы. Исключением является, например, желатина, в составе которой входят макромолекулы с молекулярной массой 12 000тАФ 70000.

Строением белков объясняются их весьма разнообразные свойВнства. Они имеют разную растворимость: некоторые растворяются в воде, другие тАФ в разбавленных растворах нейтральных солей, а некоторые совсем не обладают свойством растворимости (например, белки покровных тканей). При растворении белков в воде образуется своеобразная молекулярно-дисперсная система (раствор высокомолекулярного вещества). Некоторые белки могут быть выВнделены в виде кристаллов (белок куриного яйца, гемоглобина крови).

Функции белков в организме

         Функции белков в организме разнообразны. Они в значительной мере обусловлены сложностью и разнообразием форм и состава самих белков.

Белки - незаменимый строительный материал. Одной из важнейших функций белковых молекул является пластическая. Все клеточные мембраны содержат белок, роль которого здесь разнообразна. Количество белка в мембранах составляет более половины массы.

Многие белки обладают сократительной функцией. Это прежде всего белки актин и миозин, входящие в мышечные волокна высших организмов. Мышечные волокна - миофибриллы - представляют собой длинные тонкие нити, состоящие из параллельных более тонких мышечных нитей, окруженных внутриклеточной жидкостью. В ней растворены аденозинтрифосфорная кислота (АТФ), необходимая для осуществления сокращения, гликоген - питательное вещество, неорганические соли и многие другие вещества, в частности кальций.

Велика роль белков в транспорте веществ в организме. Имея функциональные различные группы и сложное строение макромолекулы, белки связывают и переносят с током крови многие соединения. Это прежде всего гемоглобин, переносящий кислород из легких к клеткам. В мышцах эту функцию берет на себя еще один транспортный белок - миоглобин.

Еще одна функция белка - запасная. К запасным белкам относят ферритин - железо, овальбумин - белок яйца, казеин - белок молока, зеин - белок семян кукурузы.

Регуляторную функцию выполняют белки-гормоны.

Гормоны - биологически активные вещества, которые оказывают влияние на обмен веществ. Многие гормоны являются белками, полипептидами или отдельными аминокислотами. Одним из наиболее известных белков-гормонов является инсулин. Этот простой белок состоит только из аминокислот. Функциональная роль инсулина многопланова. Он снижает содержание сахара в крови, способствует синтезу гликогена в печени и мышцах, увеличивает образование жиров из углеводов, влияет на обмен фосфора, обогащает клетки калием. Регуляторной функцией обладают белковые гормоны гипофиза - железы внутренней секреции, связанной с одним из отделов головного мозга. Он выделяет гормон роста, при отсутствии которого развивается карликовость. Этот гормон представляет собой белок с молекулярной массой от 27000 до 46000.

Одним из важных и интересных в химическом отношении гормонов является вазопрессин. Он подавляет мочеобразование и повышает кровяное давление. Вазопрессин - это октапептид циклического строения с боковой цепью:

Регуляторную функцию выполняют и белки, содержащиеся в щитовидной железе - тиреоглобулины, молекулярная масса которых около 600000. Эти белки содержат в своем составе йод. При недоразвитии железы нарушается обмен веществ.

Другая функция белков - защитная. На ее основе создана отрасль науки, названная иммунологией.

В последнее время в отдельную группу выделены белки с рецепторной функцией. Есть рецепторы звуковые, вкусовые, световые и др. рецепторы.

Следует упомянуть и о существовании  белковых веществ, тормозящих действие ферментов. Такие белки обладают ингибиторными функциями. При взаимодействии с этими белками фермент образует комплекс и теряет свою активность полностью или частично. Многие белки - ингибиторы ферментов - выделены в чистом виде и хорошо изучены. Их молекулярные массы колеблются в широких пределах; часто они относятся к сложным белкам - гликопротеидам, вторым компонентом которых является углевод.

Если белки классифицировать только по их функциям, то такую систематизацию нельзя было бы считать завершенной, так как новые исследования дают много фактов, позволяющих выделять новые группы белков с новыми функциями. Среди них уникальные вещества - нейропептиды (ответственные за жизненно важные процессы: сна, памяти, боли, чувства страха, тревоги).      

Биологические катализаторы.

В основе всех жизненных процессов лежат тысячи химических реакций. Они идут в организме без применения высокой температуры и давления, т. е. в мягких условиях. Вещества, которые окисляются в клетках человека и животных, сгорают быстро и эффективно, обогащая организм энергией и строительным материалом. Но те же вещества могут годами храниться как в консервированном (изолированном от воздуха) виде, так и на воздухе в присутствие кислорода. Возможность быстрого переваривания продуктов в живом организме осуществляется благодаря присутствию в клетках особых биологических катализаторов - ферментов.

Ферменты - это специфические белки, входящие в состав всех клеток и тканей живых организмов играющие роль биологических катализаторов. О ферментах люди узнали давно. Еще в начале прошлого века в Петербурге К.С.Кирхгоф выяснил, что проросший ячмень способен превращать полисахарид крахмал в дисахарид мальтозу, а экстракт дрожжей расщеплял свекловичный сахар на моносахариды - глюкозу и фруктозу. Это были первые исследования в ферментологии. Хотя на практике применение ферментативных процессов было известно с незапамятных времен (сбраживание винограда, сыроварение и др.).           

В разных изданиях применяются два понятия: "ферменты" и "энзимы". Эти названия идентичны. Они обозначают одно и тоже - биологические катализаторы. Первое слово переводится как "закваска", второе - "в дрожжах".

Долгое время не представляли, что же происходит в дрожжах, какая сила, присутствующая в них, заставляет вещества разрушаться и превращаться в более простые. Только после изобретения микроскопа было установлено, что дрожжи - это скопление большого количества микроорганизмов, которые используют сахар в качестве своего основного питательного вещества. Иными словами, каждая дрожжевая клетка "начинена" ферментами способными разлагать сахар. Но в то же время были известны и другие биологические катализаторы, не заключенные в живую клетку, а свободно "обитающие" вне ее. Например, они были найдены в составе желудочных соков, клеточных экстрактов. В связи с этим в прошлом различали два типа катализаторов: считалось, что собственно ферменты неотделимы от клетки и вне ее не могут функционировать, т.е. они "организованы". А "неорганизованные" катализаторы, которые могут работать вне клетки, называли энзимами. Такое противопоставление "живых" ферментов и "неживых" энзимов объяснялось влиянием виталистов, борьбой идеализма и материализма в естествознании. Точки зрения ученых разделились. Основоположник микробиологии Л. Пастер утверждал, что деятельность ферментов определяется жизнью клетки. Если клетку разрушить, то прекратиться и действие фермента. Химики во главе с Ю. Лбихом развивали чисто химическую теорию брожения, доказывая, что активность ферментов не зависит от существования клетки.

В 1871 г. русский врач М.М. Манассеина разрушила дрожжевые клетки, растирая их речным песком. Клеточный сок, отделенный от остатков клеток, сохранял свою способность сбраживать сахар. Через четверть века немецкий ученый Э. Бухнер получил бесклеточный сок прессованием живых дрожжей под давлением до 5*10 Па. Этот сок, подобно живым дрожжам, сбраживал сахар с образованием спирта и оксида углерода (IV):

Работы А.Н. Лебедева по исследованию дрожжевых клеток и труды других ученых положили конец виталистическим представления в теории биологического катализа, а термины "фермент" и "энзим" стали применять как равнозначные.

В наши дни ферментология - это самостоятельная наука. Выделено и изучено около 2 тыс. ферментов.

Белки играют важнейВншую роль в жизнедеятельности всех организмов. При пищеварении белковые молекулы перевариваются до аминокислот, которые, будучи хорошо растворимы в водной среде, проникают в кровь и поступают во все ткани и клетки организма. Здесь наиВнбольшая часть аминокислот расходуется на синтез белков различВнных органов и тканей, частьтАФна синтез гормонов, ферментов и других биологически важных веществ, а остальные служат как энергетический материал. Т.е. белки выполняют каталитические (ферменВнты), регуляторные (гормоны), транспортВнные (гемоглобин, церулоплазмин и др.), защитные (антитела, тромбин и др.) функции

Белки тАФ важнейшие компоненты пищи человека и корма животных. Совокупность непрерывно протекающих химических превращений белков заниВнмает ведущее место в обмене веществ оргаВннизмов. Скорость обновления белков у живых организмов зависит от содержания белков в пище, а также его биологической ценности, которая определяется наличием и соотношением незаменимых аминокислот

Белки растений беднее белков животного происхождения по содержаВннию незаменимых аминокислот, особенВнно лизина, метионина, триптофана. Белки сои и картофеля по аминокислотному соВнставу наиболее близки белкам животных. Отсутствие в корме незаменимых аминокислот приВнходит к тяжёлым нарушениям азотистого обмена. Поэтому селекция зерновых культур направлена, в частности, и на повышение качества белкового состава зерна.

Свойства ферментов.

Важнейшим свойством ферментов является преимущественное одной из нескольких теоретически возможных реакций. В зависимости от условий ферменты способны катализировать как прямую так и обратную реакцию. Это свойство ферментов имеет большое практическое значение.

Другое важнейшее свойство ферментов - термолабильность, т. е. высокая чувствительность к изменениям температуры. Так как ферменты являются белками, то для большинства из них температура свыше 70 C приводит к денатурации и потере активности. При увеличении температуры до 10 С реакция ускоряется в 2-3 раза, а при температурах близких к 0 С скорость ферментативных реакций замедляется до минимума.

Следующим важным свойством является то, что ферменты находятся в тканях и клетках в неактивной форме (проферменте). Классическими его примерами являются неактивные формы пепсина и трипсина. Существование неактивных форм ферментов имеет большое биологическое значение. Если бы пепсин вырабатывался сразу в активной форме, то пепсин "переваривал" стенку желудка, т. е. желудок "переваривал" сам себя.

Когда в пищеварительном тракте или в эксперименте белки расщепляются на более простые соединения, то через ряд промежуточных стадий (альбумоз и пептонов) они расщепляются на полипептиды и, наконец, на аминокислоты. Аминокислоты в отличие от белков легко всасываются и усваиваются организмом. Они используются организмом для образования собственного специфического белка. Если же вследствие избыточного поступления аминокислот их расщепление в тканях продолжается, то они окисляются до углекислого газа и воды.

Большинство белков растворяется в воде. Молекулы белков в силу их больших размеров почти не проходят через поры животных или растительных мембран. При нагревании водные растворы белков свертываются. Есть белки (например, желатина), которые растворяются в воде только при нагревании.

При поглощении пища сначала попадает в ротовую полость, а затем по пищеводу в желудок. Чистый желудочный сок бесцветен, имеет кислую реакцию. Кислая реакция зависит от наличия соляной кислоты, концентрация которой составляет 0,5%.

Желудочный сок обладает свойством переваривать пищу, что связано с наличием в нем ферментов. Он содержит пепсин - фермент, расщепляющий белок. Под влиянием пепсина белки расщепляются на пептоны и альбумозы. Железами желудка пепсин вырабатывается в неактивном виде, переходит в активную форму при воздействии на него соляной кислоты. Пепсин действует только в кислой среде и при попадании в щелочную среду становится не гативным.

Пища, поступив в желудок, более или менее длительное время задерживается в нем - от 3 до 10 часов. Срок пребывания пищи в желудке зависит от ее характера и физического состояния - жидкая она или твердая. Вода покидает желудок немедленно после поступления. Пища, содержащая большее количество белков, задерживается в желудке дольше, чем углеводная; еще дольше остается в желудке жирная пища. Передвижение пищи происходит благодаря сокращению желудка, что способствует переходу в пилорическую часть, а затем в двенадцатиперстную кишку уже значительно переваренной пищевой кашицы.

Пищевая кашица, поступившая в двенадцатиперстную кишку, подвергается дальнейшему перевариванию. Здесь на пищевую кашицу изливается сок кишечных желез, которыми усеяна слизистая оболочка кишки, а также сок поджелудочной железы и желчь. Под влиянием этих соков пищевые вещества - белки, жиры и углеводы - подвергаются дальнейшему расщеплению и доводятся до такого состояния, когда могут всосаться в кровь и лимфу.

Поджелудочный сок бесцветен и имеет щелочную реакцию. Он содержит ферменты, расщепляющие белки, углеводы и жиры.

Одним из основных ферментов является трипсин, находящийся в соке поджелудочной железы в недеятельном состоянии в виде трипсиногена. Трипсиноген не может расщеплять белки, если не будет переведен в активное состояние, т.е. в трипсин. Трипсиноген переходит в трипсин при соприкосновении с кишечным соком под влиянием находящегося в кишечном соке вещества энтерокиназы. Энтерокиназа образуется в слизистой оболочке кишечника. В двенадцатиперстной кишке действие пепсина прекращается, так как пепсин действует только в кислой среде. Дальнейшее переваривание белков продолжается уже под влиянием трипсина.

Трипсин очень активен в щелочной среде. Его действие продолжается и в кислой среде, но активность падает. Трипсин действует на белки и расщепляет их до аминокислот; он также расщепляет образовавшиеся в желудке пептоны и альбумозы до аминокислот.

В тонких кишках заканчивается переработка пищевых веществ, начавшаяся в желудке и двенадцатиперстной кишке. В желудке и двенадцатиперстной кишке белки, жиры и углеводы расщепляются почти полностью, только часть их остается не переваренной. В тонких кишках под влиянием кишечного сока происходит окончательное расщепление всех пищевых веществ и всасывание продуктов расщепления. Продукты расщепления попадают в кровь. Это происходит через капилляры, каждый из которых подходит к ворсинке, расположенной на стенке тонких кишок.

КЛАССИФИКАЦИЯ БЕЛКОВ

Белки подразделяются на две большие группы: простые белки, или протеины, и сложные белки, или протеиды.

При гидролизе протеинов в кислом водном растворе получают только а-аминокислоты. Гидролиз протеидов дает кроме аминоВнкислот и вещества небелковой природы (углеводы, нуклеиновые кислоты и др.); это соединения белковых веществ с небелковыми.

Протеины.

Альбумины хорошо растворяются в воде. Встречаются в молоВнке, яичном белке и крови.

Глобулины в воде не растворяются, но растворимы в разбавленВнных растворах солей. К глобулинам принадлежат глобулины крови и мышечный белок миозин.

Глутелины растворяются только в разбавленных растворах щеВнлочей. Встречаются в растениях.

Склеропротеины тАФ нерастворимые белки. К склеропротеинам относятся кератины, белок кожи и соединительных тканей коллаВнген, белок натурального шелка фиброин.

Протеиды построены из протеинов, соединенных с молекулами другого типа (простетическими группами).

Фосфопротеиды содержат молекулы фосфорной кислоты, свяВнзанные в виде сложного эфира у гидроксильной группы аминокислоВнты серина. К ним относится вителлинтАФбелок, содержащийся в яичном желтке, белок молока казеин.

Гликопротеиды содержат остатки углеводов. Они входят в сосВнтав хрящей, рогов, слюны.

Хромопротеиды содержат молекулу окрашенного вещества, обычно типа порфина. Самым важным хромопротеидом является гемоглобин тАФ переносчик кислорода, окрашиВнвающий красные кровяные тельца.

Нуклеопротеиды тАФ протеины, связанные с нуклеиновыми кисВнлотами. Они представляют собой очень важные с биологической точВнки зрения белкитАФсоставные части клеточных ядер. Нуклеопротеиды являются важнейшей составной частью вируВнсов тАФ возбудителей многих болезней.

При соединении двух или нескольких аминокислот образуется более сложное соединение - полипептид. Полипептиды, соединяясь, образуют еще более сложные и крупные частицы и в итоге - сложную молекулу белка.

ОБМЕН БЕЛКОВ

После расщепления белков в пищеварительном тракте образовавшиеся аминокислоты всасываются в кровь. В кровь всасывается также незначительное количество полипептидов - соединений, состоящих из нескольких аминокислот. Из аминокислот клетки нашего тела синтезируют белок, причем белок, который образуется в клетках человеческого организма, отличается от потребленного белка и характерен для человеческого организма.

Образование нового белка в организме человека и животных идет беспрерывно, так как в течении всей жизни взамен отмирающих клеток крови, кожи, слизистой оболочки, кишечника и т. д. создаются новые, молодые клетки. Для того чтобы клетки организма синтезировали белок, необходимо, чтобы белки поступали с пищей в пищеварительный канал, где они подвергаются расщеплению на аминокислоты, и уже из всосавшихся аминокислот будет образован белок.

Если же, минуя пищеварительный тракт, ввести белок непосредственно в кровь, то он не только не может быть использован человеческим организмом, он вызывает ряд серьезных осложнений. На такое введение белка организм отвечает резким повышением температуры и некоторыми другими явлениями. При повторном введении белка через 15-20 дней может наступить даже смерть при параличе дыхания, резком нарушение сердечной деятельности и общих судорогах.

Белки не могут быть заменены какими-либо другими пищевыми веществами, так как синтез белка в организме возможен только из аминокислот.

Для того чтобы в организме мог произойти синтез присущего ему белка, необходимо поступление всех или наиболее важных аминокислот.

Из известных аминокислот не все имеют одинаковую ценность для организма. Среди них есть аминокислоты, которые могут быть заменены другими или синтезированными в организме из других аминокислот; наряду с этим есть и незаменимые аминокислоты, при отсутствии которых или даже одной из них белковый обмен в организме нарушается.

Белки не всегда содержат все аминокислоты: в одних белках содержится большее количество необходимых организму аминокислот, в других - незначительное. Разные белки содержат различные аминокислоты и в разных соотношениях.

Белки, в состав которых входят все необходимые организму аминокислоты, называются полноценными; белки, не содержащие всех необходимых аминокислот, являются неполноценными белками.

Для человека важно поступление полноценных белков, так как из них организм может свободно синтезировать свои специфические белки. Однако полноценный белок может быть заменен двумя или тремя неполноценными белками, которые, дополняя друг друга, дают в сумме все необходимые аминокислоты. Следовательно, для нормальной жизнедеятельности организма необходимо, чтобы в пище содержались полноценные белки или набор неполноценных белков, по аминокислотному содержанию равноценных полноценным белкам.

Поступление полноценных белков с пищей крайне важно для растущего организма, так как в организме ребенка не только происходит восстановление отмирающих клеток, как у взрослых, но и в большом количестве создаются новые клетки.

Обычная смешанная пища содержит разнообразные белки, которые в сумме обеспечивают потребность организма в аминокислотах. Важна не только биологическая ценность поступающих с пищей белков, но и их количество. При недостаточном количестве белков нормальный рост организма приостанавливается или задерживается, так как потребности в белке не покрываются из-за его недостаточного поступления.

К полноценным белкам относятся преимущественно белки животного происхождения, кроме желатины, относящейся к неполноценным белкам. Неполноценные белки - преимущественно растительного происхождения. Однако некоторые растения (картофель, бобовые и др.) содержат полноценные белки. Из животных белков особенно большую ценность для организма представляют белки мяса, яиц, молока и др.

Список литературы

  1. Энциклопедия ВлКругосветВ» стр. 217-225
  2. Энциклопедия ВлФрегатВ» стр. 321-329

Вместе с этим смотрят:

Функции ГЛИИ
Характеристики основных форм оздоровительной физкультуры
Хламидии
Хлорелла