Ионоселективные электроды

ИОНОСЕЛЕКТИВНЫЕ ЭЛЕКТРОДЫ Содержание

Введение

История создания ионоселективных электродов

Ионоселективные электроды

ВаВаВаВаВаВа Электроды с твердыми мембранами

ВаВаВаВаВаВаВаВаВаВаВаВа Лантанфторидный электрод

ВаВаВаВаВаВаВаВаВаВаВаВа Сульфидсеребряные электроды

ВаВаВаВаВаВаВаВаВаВаВаВа Галогенсеребряные и некоторые другие электроды на основе серебра

ВаВаВаВаВаВаВаВаВаВаВаВа Электроды на основе сульфидов некоторых двузарядных металлов

ВаВаВаВаВаВаВаВаВаВаВаВа Стеклянные электроды

ВаВаВаВаВаВа Электроды с жидкими мембранами

ВаВаВаВаВаВаВаВаВаВаВаВаВа Электроды на основе жидких катионитов

ВаВаВаВаВаВаВаВаВаВаВаВаВа Электроды на основе жидких анионитов

ВаВаВаВаВаВаВаВаВаВаВаВаВа Нитрат - селективный электрод

ВаВаВаВаВаВаВа Газовые электроды

ВаВаВаВаВаВаВа Энзимные электроды

Заключение

Литература

Ва

Введение

Ва Для определения состава и свойств различных соединений и растворов используются химические, физические и физико-химические методы анализа. В некоторых случаях появляется необходимость определять концентрацию различных ионов в растворе. Целью данной работы является рассмотрение ионоселективных электродов: их разнообразие, изготовление, принцип действия, область применения данных электродов, а также более подробное рассмотрение свойств мембранного электрода, его особенности.

История ионоселективных электродов

Ва Ионометрия в настоящее время представляет собой достаточно широкую область науки и техники и играет не мало важную роль в аналитической химии. Основная задача ионометрии - изучение и разработка различного рода ионоселективных электродов.

ВаВаВаВа История развития мембранных электродов связана с исследованиями физиологических процессов. В середине Х I Х века физиологи обнаружили возникновение между отдельными частицами организмов разности электрических потенциалов. Для понимая действия сложных биологических мембран химиками в конце Х I Х были созданы простейшие модели мембран.

ВаВаВаВа В 1890 году Оствальд воспользовался понятием полупроницаемой мембраны для создания модели биологической мембраны и показал, что значение разности потенциалов в такой мембране можно считать предельным в случае жидкостного потенциала, когда подвижность одного из ионов равна нулю.

ВаВаВаВа В начале ХХ столетия была обнаружена способность стеклянной мембраны реагировать на изменение концентрации ионов водорода. Первые основные исследования потенциалов стеклянных мембран проведены Кремером и Габером. Ими же созданы и первые прототипы стеклянных и других электродов с твердыми и жидкими мембранами.

ВаВаВаВа Первые стеклянные электроды для практического измерения рН в растворах были предложены в 20-х годах Юзом, Долом и Мак-Иннесом, Никольским и Шульцем. В 50-х Ва годах появились стеклянные электроды с функциями ионов щелочных металлов, их которых наибольшее практическое значение имеет натриевый стеклянный электрод.

ВаВаВаВа Жидкие мембраны, содержащие растворенный ионит, впервые изучали Соллнер и Шин. Однако у этих мембран отсутствовала достаточная селективность по отношению к какому-либо определенному иону. [2] ВаВаВаВа

Ионоселективные электроды

Ва Ионоселективным электродом называется индикаторный или измерительный электрод с относительно высокой специфичностью к отдельному иону или типу ионов.

ВаВаВаВа Ионселективные электроды имеют следующие достоинства: они не оказывают воздействия на исследуемый раствор; портативны; пригодны как для прямых определений, так и в качестве индикаторов в титриметрии. [3] Ва

В зависимости от типа мембраны ионселективные электроды можно разделить на следующие группы:

твердые электроды - гомогенные, гетерогенные, на основе ионообменных смол, стекол, осадков, моно- и поликристаллов;

жидкостные электроды на основе жидких ионитов хелатов - нейтральные переносчики, биологически активных веществ;

газовые и энзимные электроды

Электроды с твердыми мембранами - мебраны данного вида электродов представляют собой моно- или поликристаллы труднорастворимых в воде солей. В этих мембранах обычно один из двух составляющих соль ионов способен под действием электрического поля перемещаться в кристаллической решетке по ее дефектам. Примерами могут служить мембраны из солей галогенидов серебра, которые обладают ионной проводимостью, осуществляемой ионами серебра. Поведение этих мембран, в простейших случаях, идентично поведению соответствующих электродов второго рода (хлорсеребряного и каломельного). Тонкая пластинка из монокристалла, например, хлорида серебра, может быть мембраной электрода, обратимой по отношению к иону Cl - , который закреплен в кристаллической решетке. В то же время такой электрод обладает и катионной Ag + -функцией за счет постоянства произведения растворимости ПР AgCl .

Кристаллические мембраны отличаются очень высокой селективностью, превышающей селективность жидкостных электродов (с ионообменными веществами) на несколько порядков. Это связано с тем, что селективность у твердых кристаллических мембранных электродов достигается за счет вакансионного механизма переноса заряда, при котором вакансии заполняются только определенным подвижным ионом ( Ag + ), так как форма, размер, распределение заряда вакансии соответствуют только определенному подвижному иону. К электродам с твердой мембраной относятся: лантанфторидный электрод, сульфидсеребряные электроды, галогенсеребряные электроды, электроды на основе сульфидов (халькогенидов) некоторых двузарядных ионов металлов, стеклянные электроды.

Наиболее совершенным и высокоселективным электродом для определения F - ионов является монокристаллический лантанфторидный электрод. У этого электрода F - -функция сохраняется до концентрации ионов F - ~ 10 -5 тАФ10 - 7 М , т.е. значительно меньшей, чем рассчитанная из литературных данных о растворимости фторида лантана. Это свойственно и другим электродам на основе моно- и поликристаллов. Потенциал LaF 3 -электрода подчиняется уравнению Нернста в интервале концентраций 10 0 -10 - 6 М . Селективность LaF 3 -электрода в присутствии многих других анионов может быть охарактеризована возможностью определения активности ионов F - при более чем 1000-кратных избытках галоген-ионов, NO Вн 3 - PO 4 3- , HCO 3 - и других анионов. Существенно мешают определению а F - только катионы, дающие комплексы с фторидами ( Al 3+ , Fe 3+ , Ce 4+ , Li + , Th 4+ ) и анионы OH - . Как и для всякого электрода, поверхность лантанфторидного электрода может изменяться в результате реакций с веществам исследуемого раствора. Например, в растворах, содержащих карбоксильные кислоты поверхность электрода и, соответственно, потенциал изменяются, за счет образования смешанных солей фторида и аниона карбоксильных кислот (поверхность можно вернуть к первоначальному состоянию, после выдерживания электрода в буферном и чистом растворах фторида натрия). Потенциал в концентрированных растворах устанавливается менее чем за 0,5 с, а при низких концентрациях - до 3 мин. Стабильность потенциала F - -электрода достаточна для длительной работы без периодических калибровок (изменение потенциала примерно В±2 мВ в неделю). Применяют лантанфторидный электрод для определения произведений растворимости, определение ионов F - в различных жидких средах и твердых веществах, для анализа биологических материалов, сточных вод, минеральных удобрений, фармацевтических средств.

Сульфидсеребряные электроды - этот вид электродов является универсальным, с одной стороны Ag 2 S является основой одного из первых гомогенных кристаллических электродов с высокой избирательностью по отношению к ионам Ag + и S 2- , с другой стороны - Ag 2 S оказался превосходной инертной матрицей для кристаллических галогенидов серебра и многих сульфидов двузарядных металлов. Ag 2 S -электрод в растворах AgNO 3 обладает полной Ag + -функцией в интервале концентраций 10 0 -10 - 7 М Ag + . Нижний концентрированный предел обусловлен нестабильностью растворов при концентрации ниже 10 - 7 М Ag + . Однако можно измерить очень низкие концентрации свободных ионов Ag + в присутствии комплексообразователей, которые создают буферность раствора относительно измеряемого иона. S 2- -функция экспериментально выполняется в интервале от 10 -2 до 10 - 7 М в сильнощелочных сульфидных растворах. На потенциал рассматриваемого электрода влияют Hg 2+ и CN - ионы. Влияние ионов CN - обусловлено реакцией:

6CN - + Ag 2 S = S 2- + 2Ag(CN) 3 2-

В обычной конструкции ионселективного электрода с твердой мембранной внутренняя поверхность мембраны контактирует со стандартным раствором электролита, в который погружен вспомогательный электрод, создающий обратимый переход от ионной проводимости в электролите к электронной проводимости в металлическом проводнике. Однако удобнее внутренний контакт создавать с помощью твердых веществ (графит, металлы) - такие электроды называются твердофазными . Ва

Галогенсеребряные и некоторые другие электроды на основе серебра - для определения концентрации галоген-ионов используют электроды на основе солей серебра (гомогенные электроды с твердыми мембранами или монокристаллами, принципиально не отличаются от так называемых гетерогенных, мембраны которых содержат такие же труднорастворимые соли, внедренные в пластическую матрицу). В данных электрода используют смеси твердых электролитов Ag Х (Х- Cl , Br , I ) с Ag 2 S . При изготовлении Ag Х- Ag 2 S -электродов Ag Х в виде тонкого порошка диспергирует в Ag 2 S . Последний из-за значительно меньшей растворимости (чем у галогенидов серебра) выполняет роль химически инертной матрицы. Ag 2 S относится к полупроводникам нестехиометрического состава, у которых электрические характеристики зависят от условий получения образца и его чистоты. Эти особенности Ag 2 S сказываются на электропроводности мембран. Проводимость в Ag Х-мембранах осуществляется ионами Ag + по дырочному механизму Френкеля. Мембранная фаза имеет постоянный состав, и диффузионный потенциал внутри мембраны равен нулю. Потенциал галоген серебряных электродов подчиняется уравнению Нернста. Существует 3 типа Ag Х- электродов: первый - основу составляет смесь Ag Х и Ag 2 S , такой состав устраняет недостатки AgBr - и AgCl -электродов и позволяет получить AgI -электрод, т.к. мембраны из чистого иодида серебра не устойчивы и легко растрескиваются (это вызвано тем, что твердый иодид серебра в зависимости от температуры и давления может находится в различных модификациях); второй - основу мембраны составляет смесь монокристаллов Cl и AgBr . Для AgI -электродов применяют смесь поликристаллических AgI и Ag 2 S ; третий - основу мембраны составляют осадки галогенидов серебра, внедренные в силиконовый каучук. Качество мембран зависит от природы и количества осадка, введенного в мембрану, и от способа образования мембранной поверхности. С AgCl -электродом можно определять ионы Cl - в интервале концентраций 10 -5 - 6 М . Для AgI -электродов нернстовская зависимость потенциала наблюдается до 10 - 6 М I - . Потенциометрическое определение с галогенсеребряным электродом осложняется присутствием в исследуемом растворе сульфида, тиосульфата и цианата или восстановителей. Кроме галогенсеребряных электродов используют и ионселективные CN - и SCN - - электроды. AgCl -электрод используют для определения Cl - ионов в молоке, минеральных фосфатах, фармацевтическом производстве, при анализе гидроокиси калия, равновесных смесей.

Электроды на основе сульфидов (халькогенидов) некоторых двузарядных ионов металлов - мембраны для этого вида электродов получают из смесей сульфида серебра и сульфида (халькогенида) соответствующего металла. Наибольшее значение для практики имеют: медный, свинцовый и кадмиевый электроды.

ВаВаВаВа Медь - селективный электрод - электрод с твердой мембраной обратимый к ионам Cu 2+ , впервые полученный Россом. Электрод создан на основе Ва сульфидов меди и серебра. Ионы Cl - (и Br - ) влияют на потенциал электрода из-за реакции, которая может протекать на поверхности мембраны:

Ag 2 S + Cu 2+ + 2 Cl - = 2 AgCl + CuS

Обратимый к ионам Cu 2+ электрод может быть изготовлен также из низшего окисла меди Cu 2 S . Твердые Cu 2+ -электроды применимы для изучения систем, содержащих окислители Ва и восстановители. Кроме кристаллического на основе Ag 2 S - CuS получены два других электрода: один с мембраной из CuS , внедренного в медный порошок, а другой с мембраной Cu 2 S - внедренного в силиконовый каучук. Медь - селективный электрод работает в интервале концентраций - от насыщенных ВаВаВаВаВаВаВаВаВаВаВаВа до 10 - 8 М . Интервал рН в котором могут функционировать электроды лежит в области 2-8 и зависит от концентрации Cu 2+ ионов.

ВаВаВаВа Свинец - селективный электрод - поликристаллическая мембрана свинцового электрода получена из смеси PbS и Ag 2 S путем прессования. Концентрационный интервал характерный для данного электрода - 10 0 -10 - 7 М . Высокое содержание ионов Cd 2+ и Fe 3+ приводит к нарушению Pb 2+ -функции электрода. Халькогенидные электроды мало пригодны в прямых измерениях, но их используют при потенциометрическом титровании свинца. Ионами, влияющими на потенциал свинцового сульфидного (халькогенидного) электрода гомогенного и гетерогенно типа, являются Ag + , Hg 2+ , Cu 2+ , Fe 3+ , S 2- , I - . Pb 2+ -электрод используют для определения SO 4 2- ионов. [2] Кроме потенциометрического Ва титрования сульфатов Pb 2+ -электрод можно применять для определения ионов C 2 O 4 2- , CrO 4 2- , Fe ( CN ) 6 4- , WO 4 2- . Pb 2+ -электрод используют при определения свинца в морской воде, а так же в газах, крови. ВаВа ВаВаВа

ВаВаВаВаВа Кадмий - селективный электрод - электрод с твердой мембраной, селективный по отношению к ионам Cd 2+ , получают прессованием смеси CdS и Ag 2 S . Диапазон определения ионов Cd 2+ - 10 0 -10 5 Ва М Cd 2+ . Кадмиевый электрод имеет ограниченную область рН, в которой он работает как строго обратимый к ионам Cd 2+ . В щелочных растворах ограничение функции электрода связано с образованием гидроокиси кадмия. Cd 2+ -электроды используют при потенциометрическом титровании и для определения сульфидов в жидкостях бумажного производства.

Стеклянные электроды - наиболее распространенные электроды. С помощью данного вида электродов определяют рН растворов. Существуют стеклянные электроды которые позволяют определить концентрацию ионов Na + , K + . В основе теории стеклянного электрода лежит представление о том, что стекло - это ионообменник, который может вступать в ионообменное взаимодействие с раствором. Стекло при этом рассматривается как твердый электролит. Стекло, состоящее из окислов натрия, кальция, кремния, обладает резко выраженным специфическим сродством к ионам Н + . Вследствие этого при соприкосновении с водными растворами в поверхностном слое стекол образуется слой, в котором ионы Na + оказываются почти полностью замещенными на ионы Н + . Поэтому мембранный электрод, изготовленный из такого стекла, обладает Н + -функцией. Введение в состав стекла окислов бария, цезия, лантана и замена натрия на литий значительно расширяет диапазон Н + -функции стеклянного электрода. Введение же окислов алюминия и бора значительно снижают Н + -функции стеклянного электрода. Таким путем удалось создать ионселективные стеклянные электроды для ионов Na + , K + , Li + , Ag + . Продолжительность функционирования стеклянного электрода определяется рядом факторов - состав стекла, толщина рН-чувствтельного поверхностного слоя мембраны, температура и состав раствора, в котором электрод используется. Разрушение стекла водными растворами происходит в результате сорбции воды стеклом и глубокое ее проникновение в толщу. Коррозионному действию щелочных растворов, образующихся при экстракции щелочных компонентов стекла, подвергается и горловое стекло. Кремнекислородная сетка испытывает воздействие с обеих сторон мембраны. В конце концов развиваются трещины, приводящие к нарушению функции электрода. [4] Для защиты электрода от разрушения необходимо хранить его в воде, так как в воде происходит выщелачивание связанных ионными силами основных компонентов стекла и замена их ионами водорода, в результате чего на поверхности стекла образуется слой гидролизованного кремнезема, предохраняющий стекло от дальнейшего разрушения.

ВаВаВаВа Факторы, влияющие на работу твердых мембранных электродов. Для достижения теоретических функций в электродах Ва с твердыми мембранами необходимо, что бы все твердые соединения, входящие в фазу мембраны, находились в равновесии с анализируемом раствором. Этого не произойдет, если ионы, присутствующие в анализируемом растворе, реагируют с отдельными компонентами мембраны. Наиболее типичной реакцией, характерной для мембран, содержащих галогениды серебра, является образование мене растворимой серебряной соли. Для электрода с мембраной из смеси сульфидов серебра и меди обнаружен более сложный характер влияния, связанный с образованием новой твердой фазы. Если электрод оказался в растворе, ионы которого приводят к образованию новой твердой фазы, то вернуть электрод в прежнее состояние можно выдержав его в растворе с высокой концентрацией соответствующих ионов. ВаВаВаВаВаВаВаВаВаВа

ВаЭлектроды с жидкими мембранами - жидкая мембрана - это слой растворителя, который не должен растворяться в исследуемом растворе. Устойчивость мембраны повышается, если к тому же органическая жидкость обладает высокой вязкостью. Низкая диэлектрическая проницаемость жидкого органического вещества способствует ассоциации ионов в фазе мембраны. Высокая селективность к определяемому иону требует большой стабильности ионного комплекса, на которую влияет растворитель. Для создания электродов с жидкими мембранами используют многие органические вещества, либо чистые, либо в соответствующем растворителе. Общее свойство всех этих соединений - способность селективно связывать некоторые небольшого размера ионы, образуя нейтральные ионогенные группы с ионами противоположного знака заряда (в жидком ионообменнике) или заряженные комплексы с нейтральными группами органической природы. Жидкие мембраны разделяют две водные фазы. На границе между мембраной и раствором происходит быстрый обмен между свободными ионами в растворе и ионами, связанными органическими группами в фазе мембраны. Селективность электрода зависит от избирательности этого ионного процесса.

ВаВаВаВа В электродах с жидкими мембранами к мембранному веществу предъявляется одно требование, так как если какой-либо ион способен вообще существовать в фазе мембраны, то он в ней будет двигаться по закону диффузии, и поэтому проблема обеспечения подвижности интересующего иона в мембране сама собой разрешается. Селективность жидких мембран будет определяться ограничением внедрения посторонних ионов в поверхность мембраны. Так как жидкая фаза находится в контакте с водными растворами, она должна быть нерастворимой в воде и иметь низкое давление паров, чтобы избежать интенсивного ее испарения. Эти требованиям могут отвечать жидкие органические вещества обладающие сравнительно большим молекулярным весом и низкими диэлектрическими проницаемостями. Ва

ВаВаВаВа К электродам с жидкими мембранами относятся: электроды на основе жидких катионитов; на основе жидких анионитов.

Электроды на основе жидких катионитов - электродно-активными веществами, определяющими катионную функцию мембранных жидкостных электродов, являются органические высокомолекулярные кислоты и их соли с карбоксильной, сульфо-, фосфорно- и тиофосфорнокислыми группами. Низкая катионная селективность электродов присуща мембранам содержащим органические сульфокислоты. Гораздо большую селективность проявляют жидкие катионообменные мембран, полученный на основе солей фосфорных и тиофосфорных органических кислот в органических растворителях. Жидкостные электроды на основе дитизонатов проявляют нернстовскую зависимость потенциалов и высокую селективность по отношению к ионам Cu 2+ , Pb 2+ , Zn 2+ , Hg 2+ , Ag + .

ВаВаВаВа Кальций - селективный электрод - наиболее широко исследованы Са 2+ -электроды на основе кальциевых солей диэфиров фосфорной кислоты, в качестве растворителей используют диоктилфенилфосфонат. Этот электрод функционирует в концентрационном интервале 10 -1 -10 - 5 М Са 2+ , при рН=6-11. Са 2+ -электрод действует в присутствии ПАВ, анионов гуминовой кислоты, салицилата, фталата, фенола, мочевины. [2] Область применения Са 2+ -электродов - определение коэффициентов активности ионов Са 2+ ; определение жесткости воды; определение растворимости Са SO 4 и СаСО 3 ; исследование ассоциации Са SO 4 и MgSO 4 в морской воде.

ВаВаВаВа Электрод, селективный по отношению к сумме катионов кальция и магния - в качестве жидкостных ионообменников применяли фосфорорганические кислоты, в качестве растворителя - дециловом спирте. Эти электроды способны обнаруживать нернстовскую зависимость потенциала от суммарной концентрации ионов Са 2+ и Ва Mg 2+ в интервале 10 -1 -10 - 4 М . Данный электрод используют для определения жесткости воды.

ВаВаВаВа Жидкие иониты с активными группами, содержащими серу, должны были бы обладать высокой селективностью относительно ионов тяжелых металлов, которые образуют труднорастворимые сульфиды.[1]

Электроды на основе жидких анионитов

Если использовать активные группы с положительным зарядом, то можно получить селективные электроды с анионной функцией. В отличие от катионселективных электродов, почти все анионоселективные электроды получены на основе солей аминов и четвертичных аммониевых оснований, являющихся типичными жидкими анионообменниками. Эти электроды могут быть использованы для следующих анионов: ClO 4 - , SCN - , I - , NO 3 - , Br - , Cl - . Возможность изготовления электродов определяется тем, в какой степени экстрагируются аминокислоты органической фазой. Для плохо экстрагируемых полярных глицина и аланина не удалось изготовить электрод. [4]

ВаВаВаВа Существует несколько разновидностей электродов с жидким анионитом. Нитрат - селективный электрод как наиболее распространенный из них будет рассмотрен более подробно.

ВаВаВаВа Перхлорат - селективный электрод Ва - электрод функционирует как обратимый по отношению к ClO 4 - иону в интервале концентраций 10 -1 -10 -4 при рН=4-11. Концентрацию ClO 4 - ионов нельзя обнаружить в присутствии следующих ионов: MnO 4 - , IO 4 - , ReO 4 - , SCN - .

ВаВаВаВа Фосфат - селективный электрод - применяют для определения активности HPO 4 2- в разбавленных растворах в интервале рН=7,0-7,5.

ВаВаВаВа Тетрафторборат - селективный электрод - некоторый электроды, содержащие фенантролиновую хелатную группу, можно использовать для определения BF 4 - в растворах. В области концентраций 10 -3 -10 - 1 М потенциал электрода отвечает на изменение концентрации BF 4 - . Электроды с мембранами, содержащими о-фенантролиновую группу, применяли для потенциометрического определения бора, предварительно переведенного в тетрафторборат.

Нитрат - селективный электрод

ВаВаВаВаВа Для ионометрического определения нитрат - иона как сильногидрофобного аниона мембрана должна содержать сильногидрофобный катион. В первом нитратном электроде в качестве такого катиона использовался металлфенантролиновый комплексный катион V (мембранный растворитель нитро- n -цимол). Этот электрод можно применять для определения нитрат - ионов в интервале рН 4-7. В других нитратных электродах ионообменниками служат соли тетраалкиламмония, например нитрат аммоний - органического иона XIII . Наиболее лучшим является электрод с возобновляемой поверхностью мембраны, в котором жидкий ионообменник Ва состоит из нитрата кристаллического фиолетового VII , растворенного в нитробензоле. Нитратные электроды чувствительны так же к нитрит - иону, мешающее влияние которого можно устранить при помощи сульфаминовой кислоты. ВаВаВа

ВаВаВа Нитратные электроды находят применение главным образом для контроля объектов окружающей среды. Определения нитратов в растения мешает присутствие больших количеств хлоридов, удалить которые можно, пропуская анализируемый раствор через ионообменную смолу Dowex 50- X 8. При анализе растительных объектов ионометрический метод, основанный на нитровании

3,4-диметилфенола после извлечения нитратов из проб методом восстановительной дистилляции. При определении же нитрат-ионов в почвах потенциометрия с использованием ионселективных электродов уступает спектрофотометрическому методу. Нитратные электроды можно применять для определения оксидов азота после перевода в нитраты при окислении (например, под действием пероксида водорода).

Газовые электроды

ВаВаВаВа Газовый электрод включает ионоселективный электрод и сравнительный электрод, контактирующие с небольшим объемом вспомогательного раствора, который отделен от исследуемого раствора газовой прослойкой или гидрофобной газопроницаемой мембраной. Существует два вида газовых электродов. Первый - ионоселективный и сравнительный электрод погружены в небольшой объем раствора определенного состава, отделенного от исследуемого раствора гидрофобной газопроницаемой мембраной. Для этого вида электродов используют два вида мембран - гомогенные, представляющие собой пленку полимера, в которой растворяется диффузионный газ, и гетерогенные, микропористые, в которых газ диффундирует фактически через воздух, заполняющий поры. В качестве мембран используют - силиконовый каучук, тефлон, полипропилен. Микропористые мембраны обладают лучшими диффузионными характеристиками по сравнению с гомогенными. Второй тип - в нем газопроницаемая мембрана заменена газовой прослойкой. В этом электроде для удержания электролита на поверхности индикаторного электрода и создания стандартной по толщине пленки в электролит вводят ПАВ или весь раствор впитывается слоем геля. В электроде с гидрофобной мембраной не требуется обновлять слой электролита на мембране индикаторного электрода после каждого измерения; электрод можно использовать в условиях протока; на показания электрода практически не влияют механические помехи (например, сотрясение); полимерная пленка защищает электрод от воздействия воздуха. Ва В электроде с газовым зазором можно изменять толщину слоя электролита, изменяя давление головки электрода на полимерную мембрану; слой электролита на индикаторном электроде очень тонок, это значительно сокращает время отклика электрода; диффузия газа в воздушной прослойке происходит гораздо быстрее, чем в мембране из полимера; из-за отсутствия прямого контакта электрода с образцом значительно возрастает срок жизни электрода. Одним из наиболее распространенных электродов, является электрод с чувствительным элементом на аммиак. Ва Эта электродная система включает катионоселективный электрод и гидрофобную мембрану, проницаемую для аммиака, но не проницаемую для таких ионов, как Na + , K + , NH 4 + . Мембрана отделяет исследуемый щелочной раствор от внутреннего раствора 0,1М NH 4 Cl , в который погружен стеклянный рН-электрод и хлорсеребряный электрод сравнения. Диффузия аммиака через мембрану вызывает изменение рН раствора, находящегося между мембраной и стеклянным электродом, который регистрирует это изменение рН. Электроды для определения кислорода и углекислого газа используют преимущественно в медицине. ВаВаВаВаВаВа ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа

Энзимные электроды

Ва Энзимные электроды подобны мембранным электродным системам, чувствительным к газам. Существенное различие заключается в иммобилизации энзимов на индикаторной поверхности электрода. Успешность применения энзимного электрода зависит от иммобилизации энзима в слое геля. Существует несколько способов иммобилизации энзимов: энзим может быть закреплен в гидрофильной мембране, или поперечно связанные молекулы энзима сами образуют мембрану; энзим может быть химически связан с поверхность мембраны; возможна так же сополимеризация с другими энзимами или протеинами; образование микрокапсул в жидкой углеводородной мембране с помощью ПАВ. [4] При иммобилизации энзимов необходимо следить, чтобы не происходило процессов ведущих к денатурации ферментов, для этого необходимо измерять активность иммобилизованных энзимов, прежде чем использовать их любой индикаторной системе. Выбор индикаторного устройства в энзимном электроде зависит от того, какие вещества образуются в результате ферментативной реакции (в любом случае применяют так же один из твердых или жидких ионоселективных электродов).

ВаВаВаВа Наиболее распространенными среди энзимных электродов являются - электрод для определения глюкозы и для оценки концентрации мочевины. Существуют так же электроды для определения концентрации мочевой кислоты, аминокислот.

ВаВаВаВа Энзимный электрод для определения глюкозы - существуют несколько методов для определения Ва глюкозы, и которых спектрофотометрический и электрохимический часто применяются для измерения концентрации глюкозы в биологических жидкостях. Большинство электрохимических методов основано на измерении скорости реакции ферментативно-катализированной системы. Один из методов основывался на том, что за изменением концентрации глюкозы следили оп уменьшению концентрации кислорода, измеряемого кислородным электродом. Для оценки содержания D -глюкозы применяют другой электрохимический метод - вольт-амперометрию на постоянном токе. Один электрод представляет собой систему, являющуюся и катализатором, в которой энзим (глюкозооксидаза) иммобилизован в матрице из полиакриламидного геля на платиновой сетке, другой электрод - платина. При пропускании постоянного тока через элемент глюкоза окисляется (при рН= const ), и измеряется потенциал системы.

ВаВаВаВа Энзимный электрод для оценки концентрации мочевины - энзимный электрод для определения мочевины в растворах или биологических жидкостях может быть сконструирован на основе NH 4 + -селективного стеклянного электрода., внешняя поверхность мембраны которого обрабатывается соответствующим образом для удержания фермента. Один из типов энзимного электрода сконструирован с применением слоя акриламидного геля, в котором фиксировалась уреаза, на поверхности стеклянной мембраны. Когда такой электрод помещали в раствор, содержащий мочевину, субстрат диффундировал в гелевый слой иммобилизованного энзима и подвергался гидролизу в соответствии с уравнением:

CO(NH 2 ) 2 + H 3 O + + H 2 O уреаза 2NH 4 + + HCO 3

Образующийся NH 4 + регистрировался NH 4 + - селективным стеклянным электродом. Уреазный электрод (содержащий фермент - уреаза) обладает хорошей стабильностью, но на его работу влияют ионы Na + , K + . Замена внешней целлофановой мембраны способствовала бы уменьшению влияния этих ионов, но тогда бы возникала проблема с диффузией субстрата. Для удаления не желательного влияния ионов натрия и калия, в исследуемый раствор добавляли алое количество смолы (1- 2 г на 50 мл раствора), и после перемешивания смеси измеряли потенциал электрода. Другие попытки элиминировать мешающее влияние ионов на функцию энзимного электрода заключались в использовании в качестве основы для них газовых электродов ( NH 3 -чувствительного электрода с воздушным промежутком). С помощью газового NH 3 -чувствительного электрода Роджерс и Пул определяли аммиак, получающийся при гидролизе мочевины в присутствии уреазы. Подобный же электрод применяли при измерении количества мочевины в сточных водах, а также в водных растворах и сыворотке крови автоматизированным методом в потоке.

Заключение

Ва Ионоселективные электроды применяют не только в химической промышленности, но и в медицине. Обладая рядом достоинств, электроды не лишены недостатков. Так некоторые электроды не могут быть использованы в присутствии определенного сорта ионов (например, перхлорат-селективнй электрод не может обнаруживать ClO 4 - в присутствии следующих ионов MnO 4 - , IO 4 - , ReO 4

SCN - ). Главным достоинством ионоселективных электродов является то, что они не оказывают влияния на исследуемый раствор.

Литература

1. "Ионселективные электроды". Под ред. Р. Дарста. Пер. с англ. - канд. хим. наук А.А.Белюстина и В.П. Прозе, - под ред. доктора хим. наук, проф. М.М. Шульца

2. Никольский Б.П., Матерова Е.А. "Ионоселективные электроды" -Л.: Химия, 1980.- 240 с., ил. (Методы аналитической химии)

3. Корыта И., Штулик К. "Ионоселективные электроды": Пер. с ческ. - М.: Мир,. 1989. -272 с., ил.

4. Ва Лакшиминараянайах Н. "Мембранные электроды": Пер. с англ./ Под ред. канд. хим. наук А.А. Белюстина.- Л.: Химия, 1979.- 360 с., ил. - Нью-Йорк. Академик Пресс, 1976.

Вместе с этим смотрят:

Искусственные и синтетические волокна
Йод
Кальций
Каучук