Исторические сведения о развитии тригонометрии

        ИСТОРИЧЕСКИЕ СВЕДЕНИЯ О РАЗВИТИИИ  ТРИГОНОМЕТРИИ

        Потребность в решении треугольников раньше всего возникла в астрономии: и в течении долгого времени тригонометрия развивалась изучалась как один из отделов астрономии.

        Насколько известно: способы решения треугольников (сферических) впервые были письменно изложены греческим астрономом Гиппархом в середине 2 века до н.э. Наивысшими достижениями греческая тригонометрия обязана астроному Птоломею (2 век н.э.), создателю геоцентрической системы мира, господствовавшей до Коперника.

          Греческие астрономы не знали синусов, косинусов и тангенсов. Вместо таблиц этих величин они употребляли таблицы: позволяющие отыскать хорду окружности по стягиваемой дуге. Дуги измерялись в градусах и минутах ; хорды тоже измерялись градусами (один градус составлял шестидесятую часть радиуса), минутами и секундами. Это шестидесятеричное подразделение греки заимствовали у вавилонян.

           Значительные высоты достигла тригонометрия и у индийских средневековых астрономов. Главным достижением индийских астрономов стала замена хорд синусами, что позволило вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом в Индии было положено начало тригонометрии как учению о тригонометрических величинах.

            Индийские ученые пользовались различными тригонометрическими соотношениями, в том числе и теми, которые в современной форме выражается как

                        2               2

                  sin    a  + cos   a = 1,

                  sin a = cos (90 - a)

                  sin ( a    +    B)= sin a . cos B + cos a . sin B.

Индийцы также знали формулы для кратких углов  sin  na , cos na,  где n=2,3,4,5.

               Тригонометрия необходима для астрономических расчетов которые оформляются в виде таблиц. Первая таблица синусов имеется в ВлСурья-сиддхантеВ» и у Ариабхаты. Она приведена через 3 45. Позднее ученые составили более подробные таблицы: например Бхаскара приводит таблицу синусов через 1 .

                 Южноиндийские математики в 16 веке добились юольщих успехов в области суммирования бесконечных числовых рядов. По-видимому, они занимались этими исследованиями, когда искали способы вычисления более точных значений числа П. Нилаканта словесно приводит правила разложения арктангенса в бесконечный степенной ряд. А в анонимном трактате ВлКаранападдхатиВ»(ВлТехника вычисленийВ») даны правила разложения синуса и косинуса в ьесконечные степенные ряды. Нужно сказать, что в Европе к подобным результатам подошли лищь в 17-18 веках. Так, ряды для синуса и косинуса вывел И.Ньютон около 1666 г., а ряд арктангенса был найден Дж Грегори в 1671 г. и Г.В.Лейбницем в 1673 г.

                 В 8 в ученые стран Ближнего и Среднего Востока познакомились с трудами индийских математиков и астрономов и перевели их на арабский язык. В середине 9 века среднеазиатский ученый аль-Хорезми написал сочинение ВлОб индийском счетеВ». После того как арабские трактаты были переведены на латынь, многие идеи индийских математиков стали достоянием европейской, а затем и мировой науки.

Вместе с этим смотрят:

Исторические сведения о тригонометрии
История математики
История открытия комплексных чисел
История тригонометрии