Теория игр и принятие решений
В зависимости от условий внешней среды и степени информативности лица принимающего решение (ЛПР) производится следующая классификация задач принятия решений:
а) в условиях риска;
б) в условиях неопределённости;
в) в условиях конфликта или противодействия (активного противника).
Теория полезности и принятия решений.
Принятие решений в условиях риска.
Критерий ожидаемого значения.
Использование критерия ожидаемого значения обусловлено стремлением максимизировать ожидаемую прибыль (или минимизировать ожидаемые затраты). Использование ожидаемых величин предполагает возможность многократного решения одной и той же задачи, пока не будут получены достаточно точные расчётные формулы. Математически это выглядит так: пусть ХтАУ случайная величина с математическим ожиданием MX и дисперсией DX. Если x1,x2,..,xn тАУ значения случайной величины (с.в.) X, то среднее арифметическое их (выборочное среднее) значений Ваимеет дисперсию . Таким образом, когда n Во ¥
Во 0 и Во MX.
Другими словами при достаточно большом объёме выборки разница между средним арифметическим и математическим ожиданием стремится к нулю (так называемая предельная теорема теории вероятности). Следовательно, использование критерия ожидаемое значение справедливо только в случае, когда одно и тоже решение приходится применять достаточно большое число раз. Верно и обратное: ориентация на ожидания будет приводить к неверным результатам, для решений, которые приходится принимать небольшое число раз.
Пример 1. Требуется принять решение о том, когда необходимо проводить профилактический ремонт ПЭВМ, чтобы минимизировать потери из-за неисправности. В случае если ремонт будет производится слишком часто, затраты на обслуживание будут большими при малых потерях из-за случайных поломок.
Так как невозможно предсказать заранее, когда возникнет неисправность, необходимо найти вероятность того, что ПЭВМ выйдет из строя в период времени t. В этом и состоит элемент тАЭрискатАЭ.
Математически это выглядит так: ПЭВМ ремонтируется индивидуально, если она остановилась из-за поломки. Через T интервалов времени выполняется профилактический ремонт всех n ПЭВМ. Необходимо определить оптимальное значение Т, при котором минимизируются общие затраты на ремонт неисправных ПЭВМ и проведение профилактического ремонта в расчёте на один интервал времени.
Пусть рt тАУ вероятность выхода из строя одной ПЭВМ в момент t, а nt тАУ случайная величина, равная числу всех вышедших из строя ПЭВМ в тот же момент. Пусть далее С1 тАУ затраты на ремонт неисправной ПЭВМ и С2 тАУ затраты на профилактический ремонт одной машины.
Применение критерия ожидаемого значения в данном случае оправдано, если ПЭВМ работают в течение большого периода времени. При этом ожидаемые затраты на один интервал составят
ОЗ = ,
где M(nt) тАУ математическое ожидание числа вышедших из строя ПЭВМ в момент t. Так как nt имеет биномиальное распределение с параметрами (n, pt), то M(nt) = npt . Таким образом
ОЗ =
Необходимые условия оптимальности T* имеют вид:
ОЗ (T*-1) ³ ОЗ (T*),
ОЗ (T*+1) ³ ОЗ (T*).
Следовательно, начиная с малого значения T, вычисляют ОЗ(T), пока не будут удовлетворены необходимые условия оптимальности.
Пусть С1 = 100; С2 = 10; n = 50. Значения pt имеют вид:
T | Варt | ОЗ(Т) | |
1 | 0.05 | 0 | |
2 | 0.07 | 0.05 | 375 |
3 | 0.10 | 0.12 | 366.7 |
4 | 0.13 | 0.22 | 400 |
5 | 0.18 | 0.35 | 450 |
Вместе с этим смотрят:
10 способов решения квадратных уравнений