Определение поверхностного натяжения методом максимального давления в газовом пузырьке
Метод состоит в том, что в исследуемую жидкость через капилляр вдувается воздушный пузырек. Давление воздуха (P), которое нужно для отрыва пузырька от капилляра является искомой величиной, которая используется для дальнейшего расчета коэффициента поверхностного натяжения.
Коэффициент (s ) рассчитывается по следующей формуле:
P=(r - r воз) g H + 2s / R, где
r - удельный вес исследуемой жидкости;
r воз - удельный вес воздуха;
g - ускорение свободного падения;
R - радиус капилляра;
H - глубина погружения капилляра в жидкость.
Из формулы видно, что первое слагаемое определяется давлением столба жидкости от погружения капилляра, а второе - избыточным давлением, которое создает поверхностное натяжение. Простота формулы не гарантирует удовлетворительной точности определения коэффициента поверхностного натяжения. Это связано с тем, что в основе формулы лежит предположение, что пузырек воздуха в момент отрыва строго сферичен. Такое предположение справедливо только в том случае, если радиус капилляра достаточно мал. Условия реального эксперимента требуют введения поправок. Наиболее распространены 2 способа корректировки результатов: формула Шредингера и таблицы Сагдена. Различия между этими способами состоят в том, что таблица позволяет делать поправки в более широком диапазоне отклонений формы пузырька от сферической формы.
Формула Шредингера выглядит следующим образом:
a2 = RH (1 - 2R/3H - R2 /6H2), где
a2 - капиллярная постоянная;
H - давление отрыва пузырька, выраженное в единицах высоты столба исследуемой жидкости.
В свою очередь a2 = 2s / g (r - r воз). Таким образом, капиллярная постоянная прямопропорциональна коэффициенту поверхностного натяжения.
Излишне говорить о том, что формула Шредингера не учитывает погружения капилляра в жидкость.
Применение формулы Шредингера ограничено радиусом капилляра в 0,4 мм, если измерять поверхностное натяжение в растворах с s =20-70 дин/см. Погрешность расчетов при этом составляет 0,3 %. Использование капилляров большего размера сопряжено с большей ошибкой расчетов!
Более точные результаты для больших размеров капилляра можно получить с помощью таблицы Сагдена.
R/a | X/R | |||||||||
0,00 | 0,01 | 0,02 | 0,03 | 0,04 | 0,05 | 0,06 | 0,07 | 0,08 | 0,09 | |
0 | 1 | 0,9999 | 0,9997 | 0,9994 | 0,999 | 0,9984 | 0,9977 | 0,9968 | 0,9958 | 0,9946 |
0,1 | 0,9934 | 0,992 | 0,9905 | 0,9888 | 0,987 | 0,9851 | 0,9831 | 0,9809 | 0,9786 | 0,9762 |
0,2 | 0,9737 | 0,971 | 0,9682 | 0,9653 | 0,9623 | 0,9592 | 0,956 | 0,9527 | 0,9492 | 0,9456 |
0,3 | 0,9419 | 0,9382 | 0,9344 | 0,9305 | 0,9265 | 0,9224 | 0,9182 | 0,9138 | 0,9093 | 0,9047 |
0,4 | 0,9 | 0,8952 | 0,8903 | 0,8853 | 0,8802 | 0,875 | 0,8698 | 0,8645 | 0,8592 | 0,8538 |
0,5 | 0,8484 | 0,8429 | 0,8374 | 0,8319 | 0,8263 | 0,8207 | 0,8151 | 0,8094 | 0,8037 | 0,7979 |
0,6 | 0,792 | 0,786 | 0,78 | 0,7739 | 0,7678 | 0,7616 | 0,7554 | 0,7493 | 0,7432 | 0,7372 |
0,7 | 0,7312 | 0,7252 | 0,7192 | 0,7132 | 0,7072 | 0,7012 | 0,6953 | 0,6894 | 0,6835 | 0,6776 |
0,8 | 0,6718 | 0,666 | 0,6603 | 0,6547 | 0,6492 | 0,6438 | 0,6385 | 0,6333 | 0,6281 | 0,623 |
0,9 | 0,6179 | 0,6129 | 0,6079 | 0,603 | 0,5981 | 0,5933 | 0,5885 | 0,5838 | 0,5792 | 0,5747 |
1,0 | 0,5703 | 0,5659 | 0,5616 | 0,5573 | 0,5531 | 0,5489 | 0,5448 | 0,5408 | 0,5368 | 0,5329 |
1,1 | 0,529 | 0,5251 | 0,5213 | 0,5176 | 0,5139 | 0,5103 | 0,5067 | 0,5032 | 0,4997 | 0,4962 |
1,2 | 0,4928 | 0,4895 | 0,4862 | 0,4829 | 0,4797 | 0,4765 | 0,4733 | 0,4702 | 0,4671 | 0,4641 |
1,3 | 0,4611 | 0,4582 | 0,4553 | 0,4524 | 0,4496 | 0,4468 | 0,444 | 0,4413 | 0,4386 | 0,4359 |
1,4 | 0,4333 | 0,4307 | 0,4281 | 0,4256 | 0,4231 | 0,4206 | 0,4181 | 0,4157 | 0,4133 | 0,4109 |
1,5 | 0,4085 | - | - | - | - | - | - | - | - | - |
Таблица отражает влияние величины R/a на величину X/R. Следует пояснить, что X = a2 / H. При очень малом радиусе капилляра X=R. Увеличение радиуса приводит к уменьшению X. Внимательный взгляд выявляет в таблице два искомых параметра - a и X. В связи с этим процесс поиска величины, а значит и коэффициента поверхностного натяжения, не так прост, поскольку приходится производить вычисления методом последовательного приближения.
Исходным приближением отношения R/a является величина (R/H)1/2. Для этого значения по таблице находится X/R. Пользуясь найденным X, вычисляется следующее приближение R/a, которое равно R/(X H)1/2. Для вновь полученного значения по таблице находится X, и процесс нахождения R/a повторяется. Вычисления завершаются тогда, когда различие вычисленных значений капиллярной постоянной становится удовлетворительным, т.е. отвечает необходимой точности измерений.
Описанные выше расчеты показывают, что без компьютерной программы производить расчеты по таблице Сагдена очень непросто.
Личный опыт использования метода максимального давления в воздушном пузырьке для меня был интересен, прежде всего, конструированием аппарата для проведения измерений (см. рисунок).
Вместе с этим смотрят:
Aerospace industry in the Russian province
AVR микроконтроллер AT90S2333 фирмы Atmel
Cкремблирование и дескремблирование линейного сигнала