Решение систем линейных алгебраических уравнений
Решение систем линейных алгебраических уравнений тАУ одна из основных задач вычислительной линейной алгебры. Хотя задача решения системы линейных уравнений сравнительно редко представляет самостоятельный интерес для приложений, от умения эффективно решать такие системы часто зависит сама возможность математического моделирования самых разнообразных процессов с применением ЭВМ. Значительная часть численных методов решения различных (в особенности тАУ нелинейных) задач включает в себя решение систем линейных уравнений как элементарный шаг соответствующего алгоритма.
Одна из трудностей практического решения систем большой размерности связанна с ограниченностью оперативной памяти ЭВМ. Хотя обьем оперативной памяти вновь создаваемых вычислительных машин растет очень быстро, тем не менее, еще быстрее возрастают потребности практики в решении задач все большей размерности. В значительной степени ограничения на размерность решаемых систем можно снять, если использовать для хранения матрицы внешние запоминающие устройства. Однако в этом случае многократно возрастают как затраты машинного времени, так и сложность соответствующих алгоритмов. Поэтому при создании вычислительных алгоритмов линейной алгебры большое внимание уделяют способам компактного размещения элементов матриц в памяти ЭВМ.
К счастью, приложения очень часто приводят к матрицам, в которых число ненулевых элементов много меньше общего чила элементов матрицы. Такие матрицы принято называть разреженными. Одним из основных источников разреженных матриц являются математические модели технических устройств, состоящих из большого числа элементов, связи между которыми локальны. Простейшие примеры таких устройств тАУ сложные строительные конструкции и большие электрические цепи.
Известны примеры решенных в последние годы задач, где число неизвестных достигало сотен тысяч. Естественно, это было бы невозможно, если бы соответствующие матрицы не являлись разреженными (матрица системы из 100 тыс. уравнений в формате двойной точности заняла бы около 75 Гбайт).
1. Теоретическая часть
1.1. Метод Гаусса
Одним из самых распространенных методов решения систем линейных уравнений является метод Гаусса. Этот метод (который также называют методом последовательного исключения неизвестных) известен в различных вариантах уже более 2000 лет.
Вычисления с помощью метода Гаусса заключаются в последовательном исключении неизвестных из системы для преобразования ее к эквивалентной системе с верхней треугольной матрицей. Вычисления значений неизвестных производят на этапе обратного хода.
1.1.1. Схема единственного деления. Рассмотрим сначала простейший вариант метода Гаусса, называемый схемой единственного деления.
Прямой ход состоит из n - 1 шагов исключения.
1-й шаг. Целью этого шага является исключение неизвестного x1 из уравнений с номерами i = 2, 3, тАж, n. Предположим, что коэффициент a11 ¹ 0. Будем называть его главным элементом 1-го шага.
Найдем величины
qi1 = ai1/a11 (i = 2, 3, тАж, n),
называемые множителями 1-го шага. Вычтем последовательно из второго, третьего, тАж, n-го уравнений системы первое уравнение, умноженное соответственно на q21, q31, тАж, qn1. Это позволит обратить в нуль коэффициенты при x1 во всех уравнениях, кроме первого. В результате получим эквивалентную систему
a11x1 + a12x2 + a13x3 + тАж + a1nxn = b1 ,
a22(1)x2 + a23(1)x3 + тАж + a2n(1)xn = b2(1) ,
a32(1)x2 + a33(1)x3 + тАж + a3n(1)xn = b3(1) ,
. . . . . . . . . . . . . . .
an2(1)x2 + an3(1)x3 + тАж + ann(1)xn = bn(1) .
в которой aij(1) и bij(1) вычисляются по формулам
aij(1) = aij − qi1a1j , bi(1) = bi − qi1b1.
2-й шаг. Целью этого шага является ислючение неизвестного x2 из уравнений с номерами i = 3, 4, тАж, n. Пусть a22(1) ≠ 0, где a22(1) тАУ коэффициент, называемый главным (или ведущим) элементом 2-го шага. Вычислим множители 2-го шага
qi2 = ai2(1) / a22(1) (i = 3, 4, тАж, n)
и вычтем последовательно из третьего, четвертого, тАж, n-го уравнения системы второе уравнение, умноженное соответственно на q32, q42, тАж, qm2. В результате получим систему
a11x1 + a12x2 + a13x3 + тАж + a1nxn = b1 ,
a22(1)x2 + a23(1)x3 + тАж + a2n(1) = b2(1) ,
a33(2)x3 + тАж + a3n(2)xn = b3(2) ,
. . . . . . . . . . . . . . . . . . .
an3(2)x3 + тАж + ann(2)xn = bn(2) .
Здесь коэффициенты aij(2) и bij(2) вычисляются по формулам
aij(2) = aij(1) тАУ qi2a2j(1) , bi(2) = bi(1) тАУ qi2b2(1).
Аналогично проводятся остальные шаги. Опишем очередной k-й шаг.
k-й шаг. В предположении, что главный (ведущий) элемент k-го шага akk(kтАУ1) отличен от нуля, вычислим множители k-го шага
qik = aik(kтАУ1) / akk(kтАУ1) (i = k + 1, тАж, n)
и вычтем последовательно из (k + 1)-го, тАж, n-го уравнений полученной на предыдущем шаге системы k-e уравнение, умноженное соответственно на qk+1,k, qk+2,k, тАж, qnk.
После (n - 1)-го шага исключения получим систему уравнений
a11x1 + a12x2 + a13x3 + тАж + a1nxn = b1 ,
a22(1)x2 + a23(1)x3 + тАж + a2n(1)xn = b2(1) ,
a33(2)x3 + тАж + a3n(2)xn = b3(2) ,
. . . . . . . . . . . . . . . . . . . .
ann(nтАУ1)xn = bn(nтАУ1) .
матрица A(n-1) которой является верхней треугольной. На этом вычисления прямого хода заканчиваются.
Обратный ход. Из последнего уравнения системы находим xn. Подставляя найденное значение xn в предпоследнее уравнение, получим xnтАУ1. Осуществляя обратную подстановку, далее последовательно находим xnтАУ1, xnтАУ2, тАж, x1. Вычисления неизвестных здесь проводятся по формулам
xn = bn(nтАУ1) / ann(nтАУ1),
xk = (bn(kтАУ1) тАУ ak,k+1(kтАУ1)xk+1 тАУ тАж тАУ akn(kтАУ1)xn) / akk(kтАУ1), (k = n тАУ 1, тАж, 1).
Необходимость выбора главных элементов. Заметим, что вычисление множителей, а также обратная подстановка требуют деления на главные элементы akk(kтАУ1). Поэтому если один из главных элементов оказывыется равным нулю, то схема единственного деления не может быть реализована. Здравый смысл подсказывает, что и в ситуации, когда все главные элементы отличны от нуля, но среди них есть близкие к нулю, возможен неконтролируемый рост погрешности.
1.1.2. Метод Гаусса с выбором главного элемента по столбцу (схема частичного выбора). Описание метода. На k-м шаге прямого хода коэффициенты уравнений системы с номерами i = k + 1, тАж, n преобразуются по формулам
aij(k) = aij(kтАУ1) − qikakj , bi(k) = bi(kтАУ1) − qikbk(kтАУ1) , i = k + 1, тАж, n.
Интуитивно ясно, что во избежание сильного роста коэффициентов системы и связанных с этим ошибок нельзя допускать появления больших множителей qik.
В методе Гаусса с выбором главного элементоа по столбцу гарантируется, что |qik| ≤ 1 для всех k = 1, 2, тАж, n тАУ 1 и i = k + 1, тАж, n. Отличие этого варианта метода Гаусса от схемы единственного деления заключается в том, что на k-м шаге исключения в качестве главного элемента выбирают максимальный по модулю коэффициент aikk при неизвестной xk в уравнениях с номерами i = k + 1, тАж, n. Затем соответствующее выбранному коэффициенту уравнение с номером ik меняют местами с k-м уравнением системы для того, чтобы главный элемент занял место коэффициента akk(k-1). После этой перестановки исключение неизвестного xk производят, как в схеме единственного деления.
1.1.3. Метод Гаусса с выбором главного элемента по всей матрице (схема полного выбора). В этой схеме допускается нарушение естественного порядка исключения неизвестных.
На 1-м шаге мтода среди элементов aij определяют максимальный по модулю элемент ai1j1. Первое уравнение системы и уравнение с номером i1 меняют местами. Далее стандартным образом производят исключение неизвестного xi1 из всех уравнений, кроме первого.
На k-м шаге метода среди коэффициентов aij(kтАУ1) при неизвестных в уравнениях системы с номерами i = k, тАж, n выбирают максимальный по модулю коэффициент aikjk(k-1). Затем k-е уравнение и уравнение, содержащее найденный коэффициент, меняют местами и исключают неизвестное xjk из уравнений с номерами i = k + 1, тАж, n.
На этапе обратного хода неизвестные вычисляют в следующем порядке: xjn, xjnтАУ1, тАж, xj1.
1.2. Метод Зейделя
1.2.1. Приведение системы к виду, удобному для итераций. Для того чтобы применить метод Зейделя к решению системы линейных алгебраических уравнений
Ax = b
с квадратной невырожденной матрицей A, необходимо предварительно преобразовать эту систему к виду
x = Bx + c.
Здесь B тАУ квадратная матрица с элементами bij (i, j = 1, 2, тАж, n), c тАУ вектор-столбец с элементами cij (i = 1, 2, тАж, n).
В развернутой форме записи система имеет следующий вид:
x1 = b11x1 + b12x2 + b13x3 + тАж + b1nxn + c1
x2 = b21x1 + b22x2 + b23x3 + тАж + b2nxn + c2
. . . . . . . . . . . . . . . . .
xn = bn1x1 + bn2x2 + bn3x3 + тАж + bnnxn + cn
Вообще говоря, операция приведения системы к виду, удобному для итераций, не является простой и требует специальных знаний, а также существенного использования специфики системы.
Самый простой способ приведения системы к виду, удобному для итераций, состоит в следующем. Из первого уравнения системы выразим неизвестное x1:
x1 = a11тАУ1 (b1 тАУ a12x2 тАУ a13x3 тАУ тАж тАУ a1nxn),
из второго уравнения тАУ неизвестное x2:
x2 = a21тАУ1 (b2 тАУ a22x2 тАУ a23x3 тАУ тАж тАУ a2nxn),
и т. д. В результате получим систему
x1 = b12x2 + b13x3 + тАж + b1,nтАУ1xnтАУ1 + b1nxn+ c1 ,
x2 = b21x1 + b23x3 + тАж + b2,nтАУ1xnтАУ1 + b2nxn+ c2 ,
x3 = b31x1 + b32x2 + тАж + b3,nтАУ1xnтАУ1 + b3nxn+ c3 ,
. . . . . . . . . . . . . . . . . . . . . . .
xn = bn1x1 + bn2x2 + bn3x3 + тАж + bn,nтАУ1xnтАУ1 + cn ,
в которой на главной диагонали матрицы B находятся нулевые элементы. Остальные элементы выражаются по формулам
bij = тАУaij / aii, ci = bi / aii (i, j = 1, 2, тАж, n, j ≠ i)
Конечно, для возможности выполнения указанного преобразования необходимо, чтобы диагональные элементы матрицы A были ненулевыми.
1.2.1. Описание метода. Введем нижнюю и верхнюю треугольные матрицы
0 0 0 тАж 0 0 b12 b13 тАж b1n
b21 0 0 тАж 0 0 0 b23 тАж b2n
B1 = b31 b32 0 тАж 0 , B2 = 0 0 0 тАж b3n
. . . . . . . . . . . . . .
bn1 bn2 bn3 тАж 0 0 0 0 тАж 0
Заметим, что B = B1 + B2 и поэтому решение x исходной системы удовлетворяет равенству
x = B1x + B2 x + c .
Выберем начальное приближение x(0) = [x1(0), x2(0), тАж, xn(0)]T. Подставляя его в правую часть равенства при верхней треугольной матрице B2 и вычисляя полученное выражение, находим первое приближение
x(1) = B1x(0) + B2x(1)
Подставляя приближение x(1), получим
x(2) = B1x(1) + B2x(2)
Продолжая этот процесс далее, получим последовательность x(0), x(1), тАж, x(n), тАж приближений к вычисляемых по формуле
x(k+1) = B1(k+1) + B2(k) + c
или в развернутой форме записи
x1(k+1) = b12x2(k) + b13x2(k) + тАж + b1nxn(k) + c1 ,
x2(k+1) = b21x1(k+1) + b23x3(k) + тАж + b2nxn(k) + c2 ,
x3(k+1) = b31x1(k+1) + b32x2(k+1) + тАж + b3nxn(k) + c3 ,
. . . . . . . . . . . . . . . . . . . . . . . . . .
xn(k+1) = bn1x1(k+1) + bn2x2(k+1) + bn3x3(k+1) + тАж + cn .
Объединив приведение системы к виду, удобному для итераций и метод Зейделя в одну формулу, получим
xi(k+1) = xi(k) тАУ aiiтАУ1(∑j=1iтАУ1 aijxj(k+1) + ∑j=1n aijxi(k) тАУ bi).
Тогда достаточным условием сходимоти метода Зейделя будет
∑j=1, j≠i n | aij | < | aii |
(условие доминированния диагонали).
Метод Зейделя иногда называют также методом Гаусса-Зейделя, процессом Либмана, методом последовательных замещений.
1.3. Сравнение прямых и итерационных методов
Системы линейных алгебраических уравнений можно решать как с помощью прямых, так и и итерационных методов. Для систем уравнений средней размерности чаще использют прямые методы.
Итерационные методы применяют главным образом для решения задач большой размерности, когда использование прямых методов невозможно из-за ограниченииий в доступной оперативной памяти ЭВМ или из-за необходимости выполнения черезмерно большого числа арифметических операций. Большие системы уравнений, возникающие в основном в приложениях, как правило являются разреженными. Методы исключения для систем с разреженным и матрицами неудобны, например, тем, что при их использовании большое число нулевых элементов превращается в ненулевые и матрица теряет свойство разреженности. В противоположность им при использованнии итерационных методов в ходе итерационного процесса матрица не меняется, и она, естественно, остается разреженной. Большая эффективность итерационных методов по сравнению с прямыми методами тесно связанна с возможностью существенного использования разреженности матриц.
Применение итерационных методов для качественного решения большой системы уравнений требует серьезного использования ее структуры, специальных знаний и определенного опыта.
2. Практическая часть
2.1 Программа решения систем линейных уравнений по методу Гаусса
2.1.1. Постановка задачи. Требуется решить систему линейных алгебраических уравнений с вещественными коэффициентами вида
a11x1 + a12x2 + тАж + a1nxn = b1 ,
a21x2 + a22x2 + тАж + a2nxn = b2 ,
. . . . . . . . . . . . .
an1x1 + an2x2 + тАж + annxn = bn
для n ≤ 10 по методу Гаусса.
2.1.2. Тестовый пример.
3,2x1 + 5,4x2 + 4,2x3 + 2,2x4 = 2,6 ,
2,1x1 + 3,2x2 + 3,1x3 + 1,1x4 = 4,8 ,
1,2x1 + 0,4x2 тАУ 0,8x3 тАУ 0,8x4 = 3,6 ,
4,7x1 + 10,4x2 + 9,7x3 + 9,7x4 = тАУ8,4 ,
x1 = 5, x2 = тАУ4, x3 = 3, x4 = тАУ2.
2.1.3. Описание алгоритма. В данной программе реализован метод Гаусса со схемой частичного выбора.
В переменную n вводится порядок матрицы системы. С помощью вспомогательной процедуры ReadSystem в двумерный массив a и одномерный массив b вводится c клавиатуры расширенная матрица системы, после чего оба массива и переменная n передаются функции Gauss. В фукции Gauss для каждого k-го шага вычислений выполняется поиск максимального элемента в k-м столбце матрицы начинаяя с k-й строки. Номер строки, содержащей максимальный элемент сохраняеется в переменной l. В том случае если максимальный элемент находится не в k-й строке, строки с номерами k и l меняются местами. Если же все эти элементы равны нулю, то происходит прекращение выполнения функции Gauss c результатом false. После выбора строки выполняется преобразование матрицы по методу Гаусса. Далее вычисляется решение системы и помещается в массив x. Полученное решение выводится на экран при помощи вспомогательной процедуры WriteX.
2.1.4. Листинг программы и результаты работы
Uses CRT;
Const
maxn = 10;
Type
Data = Real;
Matrix = Array[1.maxn, 1.maxn] of Data;
Vector = Array[1.maxn] of Data;
{ Процедура ввода расширенной матрицы системы }
Procedure ReadSystem(n: Integer; var a: Matrix; var b: Vector);
Var
i, j, r: Integer;
Begin
r := WhereY;
GotoXY(2, r);
Write('A');
For i := 1 to n do begin
GotoXY(i*6+2, r);
Write(i);
GotoXY(1, r+i+1);
Write(i:2);
end;
GotoXY((n+1)*6+2, r);
Write('b');
For i := 1 to n do begin
For j := 1 to n do begin
GotoXY(j * 6 + 2, r + i + 1);
Read(a[i, j]);
end;
GotoXY((n + 1) * 6 + 2, r + i + 1);
Read(b[i]);
end;
End;
{ Процедура вывода результатов }
Procedure WriteX(n :Integer; x: Vector);
Var
i: Integer;
Begin
For i := 1 to n do
Writeln('x', i, ' = ', x[i]);
End;
{ Функция, реализующая метод Гаусса }
Function Gauss(n: Integer; a: Matrix; b: Vector; var x:Vector): Boolean;
Var
i, j, k, l: Integer;
q, m, t: Data;
Begin
For k := 1 to n - 1 do begin
{ Ищем строку l с максимальным элементом в k-ом столбце}
l := 0;
m := 0;
For i := k to n do
If Abs(a[i, k]) > m then begin
m := Abs(a[i, k]);
l := i;
end;
{ Если у всех строк от k до n элемент в k-м столбце нулевой,
то система не имеет однозначного решения }
If l = 0 then begin
Gauss := false;
Exit;
end;
{ Меняем местом l-ую строку с k-ой }
If l <> k then begin
For j := 1 to n do begin
t := a[k, j];
a[k, j] := a[l, j];
a[l, j] := t;
end;
t := b[k];
b[k] := b[l];
b[l] := t;
end;
{ Преобразуем матрицу }
For i := k + 1 to n do begin
q := a[i, k] / a[k, k];
For j := 1 to n do
If j = k then
a[i, j] := 0
else
a[i, j] := a[i, j] - q * a[k, j];
b[i] := b[i] - q * b[k];
end;
end;
{ Вычисляем решение }
x[n] := b[n] / a[n, n];
For i := n - 1 downto 1 do begin
t := 0;
For j := 1 to n-i do
t := t + a[i, i + j] * x[i + j];
x[i] := (1 / a[i, i]) * (b[i] - t);
end;
Gauss := true;
End;
Var
n, i: Integer;
a: Matrix ;
b, x: Vector;
Begin
ClrScr;
Writeln('Программа решения систем линейных уравнений по методу Гаусса');
Writeln;
Writeln('Введите порядок матрицы системы (макс. 10)');
Repeat
Write('>');
Read(n);
Until (n > 0) and (n <= maxn);
Writeln;
Writeln('Введите расширенную матрицу системы');
ReadSystem(n, a, b);
Writeln;
If Gauss(n, a, b, x) then begin
Writeln('Результат вычислений по методу Гаусса');
WriteX(n, x);
end
else
Writeln('Данную систему невозможно решить по методу Гаусса');
Writeln;
End.
Программа решения систем линейных уравнений по методу Гаусса
Введите порядок матрицы системы (макс. 10)
>4
Введите расширенную матрицу системы
A 1 2 3 4 b
1 3.2 5.4 4.2 2.2 2.6
2 2.1 3.2 3.1 1.1 4.8
3 1.2 0.4 -0.8 -0.8 3.6
4 4.7 10.4 9.7 9.7 -8.4
Результат вычислений по методу Гаусса
x1 = 5.0000000000E+00
x2 = -4.0000000000E+00
x3 = 3.0000000000E+00
x4 = -2.0000000000E+00
2.2 Программа решения систем линейных уравнений по методу Зейделя
2.2.1. Постановка задачи. Требуется решить систему линейных алгебраических уравнений с вещественными коэффициентами вида
a11x1 + a12x2 + тАж + a1nxn = b1 ,
a21x2 + a22x2 + тАж + a2nxn = b2 ,
. . . . . . . . . . . . .
an1x1 + an2x2 + тАж + annxn = bn
для n ≤ 10 по методу Зейделя.
2.2.2. Тестовый пример.
4,1x1 + 0,1x2 + 0,2x3 + 0,2x4 = 21,14 ,
0,3x1 + 5,3x2 + 0,9x3 тАУ 0,1x4 = тАУ 17,82 ,
0,2x1 + 0,3x2 + 3,2x3 + 0,2x4 = 9,02 ,
0,1x1 + 0,1x2 + 0,2x3 тАУ 9,1x4 = 17,08 ,
x1 = 5,2, x2 = тАУ4,2, x3 = 3, x4 = тАУ1,8.
2.2.3. Описание алгоритма. В переменную n вводится порядок матрицы системы, в переменную e тАУ максимальная абсолютная погрешность. С помощью вспомогательной процедуры ReadSystem в двумерный массив a и одномерный массив b вводится c клавиатуры расширенная матрица системы. Начальное прибижение предполагается равным нулю. Оба массива и переменные n и e передаются функции Seidel. В функции Seidel исследуется сходимость системы, и в том случае если система не сходится, выполнение функции прекращается с результатом false. В ходе каждой итерации вычисляется новое приближение и и абсолютная погрешность. Когда полученная погрешность становится меньше заданной, выполнение функции прекращается. Полученное решение выводится на экран при помощи вспомогательной процедуры WriteX.
2.2.4. Листинг программы и результаты работы.
Uses CRT;
Const
maxn = 10;
Type
Data = Real;
Matrix = Array[1.maxn, 1.maxn] of Data;
Vector = Array[1.maxn] of Data;
{ Процедура ввода расширенной матрицы системы }
Procedure ReadSystem(n: Integer; var a: Matrix; var b: Vector);
Var
i, j, r: Integer;
Begin
r := WhereY;
GotoXY(2, r);
Write('A');
For i := 1 to n do begin
GotoXY(i * 6 + 2, r);
Write(i);
GotoXY(1, r + i + 1);
Write(i:2);
end;
GotoXY((n + 1) * 6 + 2, r);
Write('b');
For i := 1 to n do begin
For j := 1 to n do begin
GotoXY(j * 6 + 2, r + i + 1);
Read(a[i, j]);
end;
GotoXY((n + 1) * 6 + 2, r + i + 1);
Read(b[i]);
end;
End;
{ Процедура вывода результатов }
Procedure WriteX(n :Integer; x: Vector);
Var
i: Integer;
Begin
For i := 1 to n do
Writeln('x', i, ' = ', x[i]);
End;
{ Функция, реализующая метод Зейделя }
Function Seidel(n: Integer; a: Matrix; b: Vector; var x: Vector; e: Data) :Boolean;
Var
i, j: Integer;
s1, s2, s, v, m: Data;
Begin
{ Исследуем сходимость }
For i := 1 to n do begin
s := 0;
For j := 1 to n do
If j <> i then
s := s + Abs(a[i, j]);
If s >= Abs(a[i, i]) then begin
Seidel := false;
Exit;
end;
end;
Repeat
m := 0;
For i := 1 to n do begin
{ Вычисляем суммы }
s1 := 0;
s2 := 0;
For j := 1 to i - 1 do
s1 := s1 + a[i, j] * x[j];
For j := i to n do
s2 := s2 + a[i, j] * x[j];
{ Вычисляем новое приближение и погрешность }
v := x[i];
x[i] := x[i] - (1 / a[i, i]) * (s1 + s2 - b[i]);
If Abs(v - x[i]) > m then
m := Abs(v - x[i]);
end;
Until m < e;
Seidel := true;
End;
Var
n, i: Integer;
a: Matrix;
b, x: Vector;
e: Data;
Begin
ClrScr;
Writeln('Программа решения систем линейных уравнений по методу Зейделя');
Writeln;
Writeln('Введите порядок матрицы системы (макс. 10)');
Repeat
Write('>');
Read(n);
Until (n > 0) and (n <= maxn);
Writeln;
Writeln('Введите точность вычислений');
Repeat
Write('>');
Read(e);
Until (e > 0) and (e < 1);
Writeln;
Writeln('Введите расширенную матрицу системы');
ReadSystem(n, a, b);
Writeln;
{ Предполагаем начальное приближение равным нулю }
For i := 1 to n do
x[i] := 0;
If Seidel(n, a, b, x, e) then begin
Writeln('Результат вычислений по методу Зейделя');
WriteX(n, x);
end
else
Writeln('Метод Зейделя не сходится для данной системы');
Writeln;
End.
Программа решения систем линейных уравнений по методу Зейделя
Введите порядок матрицы системы (макс. 10)
>4
Введите точность вычислений
>.000001
Введите расширенную матрицу системы
A 1 2 3 4 b
1 4.1 0.1 0.2 0.2 21.14
2 0.3 5.3 0.9 -0.1 -17.82
3 0.2 0.3 3.2 0.2 9.02
4 0.1 0.1 0.2 -9.1 17.08
Результат вычислений по методу Зейделя
x1 = 5.2000000008E+00
x2 = -4.2000000028E+00
x3 = 3.0000000003E+00
x4 = -1.8000000000E+00
Вместе с этим смотрят:
10 способов решения квадратных уравнений