Число как основное понятие математики

Приазовский государственный технический университет

Мариупольский городской технический лицей

секция: Математика

тема: ВлЧисло как основное понятие математикиВ»

ВЫПОЛНИЛ: ученик 112 группы

Анищенко Евгений Александрович

НАУЧНЫЙ РУКОВОДИТЕЛЬ:

Ткаченко Светлана Гавриловна

Мариуполь, 2002 г.

СОДЕРЖАНИЕ

ВведениетАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж. 3

1.1. Функции натуральных чиселтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж. тАж 6

2. Рациональные числатАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж. тАж 6

2.1. Дробные числатАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж. тАж 6

2.1.1. О происхождении дробейтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж. 6

2.1.2. Дроби в Древнем РиметАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж. 7

2.1.3. Дроби в Древнем ЕгиптетАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж. 7

2.1.4. Вавилонские шестидесятеричные дробитАжтАжтАжтАж. . 8

2.1.5. Нумерация и дроби в Древней ГрециитАжтАжтАжтАжтАж. . 9

2.1.6. Нумерация и дроби на РуситАжтАжтАжтАжтАжтАжтАжтАжтАжтАж 10

2.1.7. Дроби в других государствах древноститАжтАжтАжтАж. 11

2.1.8. Десятичные дробитАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж 12

2.1.8.1. ПроцентытАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж. 13

2.2. Отрицательные числа................................ 14

2.2.1. Отрицательные числа в Древней АзиитАжтАжтАжтАжтАжтАж 14

2.2.2. Развитие идеи отрицательного количества в Европе. 15

3. Действительные числатАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж 16

3.1. Иррациональные числатАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж 16

3.2. Алгебраические и трансцендентные числатАжтАжтАжтАжтАжтАжтАж 18

4. Комплексные числатАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж 18

4.1. Мнимые числатАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж. 18

4.2. Геометрическое истолкование комплексных чиселтАжтАжтАж 20

5. Векторные числатАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж 21

6. Матричные числатАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж. 21

7. Трансфинитные числатАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж. 22

8. Функции = функциональные числа?тАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж. 23

8.1. Функциональная зависимостьтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж. 23

8.2. Развитие функциональных чиселтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж. . 24

ЗаключениетАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж 26

Литература. тАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж 27

ВлПослушайте, что смертным сделал ятАж Число им подарил

И буквы научил соединятьтАж Эсхил, ВлЗакованный ПрометейВ»

Эсхил, ВлЗакованный ПрометейВ» ВлЕсли бы ни число и его природа, ничто существующее нельзя было бы постичь им само по себе, ни в его отношениях к другим вещам. Мощь чисел проявляется во всех деяниях и помыслах людей, во всех ремес- лах и в музыкеВ» Пифагореец Филолай, 5 в. до н. э.

Введение

Число является одним из основных понятий математики. Понятие числа развивалось в тесной связи с изучением величин; эта связь сохраняется и теперь. Во всех разделах современной математики приходится рассматривать разные величины и пользоваться числами

Существует большое количество определений понятию ВлчислоВ».

Первое научное определение числа дал Эвклид в своих ВлНачалахВ», которое он, очевидно, унаследовал от своего соотечественника Эвдокса Книдского (около 408 тАУ около 355 гг. до н. э.): ВлЕдиница есть то, в соответствии с чем каждая из существующих вещей называется одной. Число есть множество, сложенное из единицВ». Так определял понятие числа и русский математик Магницкий в своей ВлАрифметикеВ» (1703 г.).

Еще раньше Эвклида Аристотель дал такое определение: ВлЧисло есть множество, которое измеряется с помощью единицВ».

Со слов греческого философа Ямвлиха, еще Фалес Милетский тАУ родоначальник греческой стихийно-материалистической философии тАУ учил, что Влчисло есть система единицВ». Это определение было известно и Пифагору.

В своей ВлОбщей арифметикеВ» (1707 г) великий английский физик, механик, астроном и математик Исаак Ньютон пишет: ВлПод числом мы подра- зумеваем не столько множество единиц, сколько абстрактное отношение какой-нибудь величины к другой величине такого же рода, взятой за единицу. Число бывает трех видов: целое, дробное и иррациональное. Целое число есть то, что измеряется единицей; дробное тАУ кратной частью единицы, иррациональное тАУ число, не соизмеримое с единицейВ».

Наш мариупольский математик С.Ф.Клюйков также внес свой вклад в определение понятия числа: ВлЧисла тАУ это математические модели реального мира, придуманные человеком для его познанияВ». Он же внес в традиционную классификацию чисел так называемые Влфункциональные числаВ», имея в виду то, что во всем мире обычно именуют функциями. Более подробно об этом изложено в главе 9.

1. Натуральные числа

Считается, что термин Влнатуральное числоВ» впервые применил римский государственный деятель, философ, автор трудов по математике и теории музыки Боэций (480 тАУ 524 гг.), но еще греческий математик Никомах из Геразы говорил о натуральном, то есть природном ряде чисел.

Понятием Влнатуральное числоВ» в современном его понимании последовательно пользовался выдающийся французский математик, философ-просветитель Даламбер (1717-1783 гг.).

Первоначальные представления о числе появились в эпоху каменного века, при переходе от простого собирания пищи к ее активному производству, примерно 100 веков до н. э. Числовые термины тяжело зарождались и медленно входили в употребление. Древнему человеку было далеко до абстрактного мышления, хватило того, что он придумал числа: ВлодинВ» и ВлдваВ». Остальные количества для него оставались неопределенными и объединялись в понятии ВлмногоВ».

Росло производство пищи, добавлялись объекты, которые требовалось учитывать в повседневной жизни, в связи с чем придумывались новые числа: ВлтриВ», ВлчетыреВ»тАж Долгое время пределом познания было число ВлсемьВ».

О непонятном говорили, что эта книжка Влза семью печатямиВ», знахарки в сказках давали больному Влсемь узелков с лекарственными травами, которые надо было настоять на семи водах в течение семи дней и принимать каждодневно по семь ложекВ».

Познаваемый мир усложнялся, требовались новые числа. Так дошли до нового предела. Им стало число 40. Запредельные количества моделировались громадным по тем временам числом Влсорок сороковВ», равным 1600.

Позднее, когда число ВлсорокВ» уже перестало быть граничным, оно стало играть большую роль в русской метрологии как основа системы мер: пуд имел 40 фунтов, бочка-сороковка тАУ сорок ведер и т.д.

Большой интерес вызывает история числа ВлшестьдесятВ», которое часто фигурирует в вавилонских, персидских и греческих легендах как синоним большого числа. Вавилоняне считали его Божьим числом: шестьдесят локтей в высоту имел золотой идол из храма вавилонского царя Навуходоносора. Позже с тем же самым значением (неисчислимое множество) возникли числа, кратные 60: 300, 360. Со временем число 60 в Вавилоне легло в основу шестидесятеричной системы исчисления, следы которой сохранились до наших дней при измерении времени и углов.

Следующим пределом у славянского народа было число ВлтьмаВ», (у древних греков тАУ мириада), равное 10 000, а запределом тАУ Влтьма тьмущаяВ», равное 100 миллионам. У славян применяли также и иную систему исчисления (так называемое Влбольшое числоВ» или Влбольшой счетВ»). В этой системе ВлтьмаВ» равнялась 106, ВллегионВ» тАУ 1012, ВллеодрВ» тАУ 1024, ВлворонВ» тАУ 1048, ВлколодаВ» тАУ 1096, после чего добавляли, что большего числа не существует.

В Античном мире дальше всех продвинулись Архимед (III в. до н.э.) в Влисчислении песчинокВ» - до числа 10, возведенного в степень 8х1016 , и Зенон Элейский (IV в. до н. э.) в своих парадоксах тАУ до бесконечности .

1.1. Функции натуральных чисел

Натуральные числа имеют две основные функции:

характеристика количества предметов;

характеристика порядка предметов, размещенных в ряд.

В соответствии с этими функциями возникли понятия порядкового числа (первый, второй и т.д.) и количественного числа (один, два и т.д.).

Долго и трудно человечество добиралось до 1-го уровня обобщения чисел. Сто веков понадобилось, чтобы выстроить ряд самых коротких натуральных чисел от единицы до бесконечности:1, 2, тАж . Натуральных потому, что ими обозначались (моделировались) реальные неделимые объекты: люди, животные, вещитАж

2. Рациональные числа

2.1. Дробные числа

2.1.1. О происхождении дробей

С возникновением представлений о целых числах возникали представления и о частях единицы, точнее, о частях целого конкретного предмета. С появлением натурального числа возникло представление о дроби вида 1/, которая называется сейчас аликвотной, родовой или основной.

Чтобы выяснить вопрос о происхождении дроби, надо остановиться не на счете, а на другом процессе, который возник со стародавних времен, - на измерении. Исторически дроби возникли в процессе измерения.

В основе любого измерения всегда лежит какая-то величина (длина, объем, вес и т.д.). Потребность в более точных измерениях привела к тому, что начальные единицы меры начали дробить на 2, 3 и более частей. Более мелкой единице меры, которую получали как следствие раздробления, давали индивидуальное название, и величины измеряли уже этой более мелкой единицей.

Так возникали первые конкретные дроби как определенные части каких-то определенных мер. Только гораздо позже названиями этих конкретных дробей начали обозначать такие же самые части других величин, а потом и абстрактные дроби.

2.1.2. Дроби в Древнем Риме

Римляне пользовались, в основном, только конкретными дробями, которые заменяли абстрактные части подразделами используемых мер. Они остановили свое внимание на мере ВлассВ», который у римлян служил основной единицей измерения массы, а также денежной единицей. Асс делился на двенадцать частей тАУ унций. Из них складывали все дроби со знаменателем 12, то есть 1/12, 2/12, 3/12тАж

Так возникли римские двенадцатеричные дроби, то есть дроби, у которых знаменателем всегда было число 12. Вместо 1/12 римляне говорили Влодна унцияВ», 5/12 тАУ Влпять унцийВ» и т.д. Три унции назывались четвертью, четыре унции тАУ третью, шесть унций тАУ половиной.

Сейчас ВлассВ» - аптекарский фунт.

2.1.3. Дроби в Древнем Египте

Первая дробь, с которой познакомились люди, была, наверное, половина. За ней последовали 1/4, 1/8 тАж, затем 1/3 , 1/6 и т.д., то есть самые простые дроби, доли целого, называемые единичными или основными дробями. У них числитель всегда единица. Некоторые народы древности и, в первую очередь, египтяне выражали любую дробь в виде суммы только основных дробей. Лишь значительно позже у греков, затем у индийцев и других народов стали входить в употребление и дроби общего вида, называемые обыкновенными, у которых числитель и знаменатель могут быть любыми натуральными числами.

В Древнем Египте архитектура достигла высокого развития. Для того, чтобы строить грандиозные пирамиды и храмы, чтобы вычислять длины, площади и объемы фигур, необходимо было знать арифметику.

Из расшифрованных сведений на папирусах ученые узнали, что египтяне 4 000 лет назад имели десятичную (но не позиционную) систему счисления, умели решать многие задачи, связанные с потребностями строительства, торговли и военного дела.

Вот как записывали египтяне свои дроби. Если, например, в результате измерения получалось дробное число 3/4 , то для египтян оно представлялось в виде суммы единичных дробей ½ + ¼ .

2.1.4. Вавилонские шестидесятеричные дроби

Раскопками, проведенными в ХХ веке среди развалин древних городов южной части Двуречья, обнаружено большое количество клинописных математических табличек. Ученые, изучая их, установили, что за 2000 лет до н. э. у вавилонян математика достигла высокого уровня развития.

Письменная шестидесятеричная нумерация вавилонян комбинировалась их двух значков: вертикального клина ▼, обозначавшего единицу, и условного знака ◄, обозначавшего десять. В вавилонских клинописных текстах впервые встречается позиционная система счисления. Вертикальный клин обозначал не только 1, но и 60, 602, 603 и т.д. Знака для нуля в позиционной шестидесятеричной системе у вавилонян вначале не было. Позже был введен знак èè , заменяющий современный ноль, для отделения разрядов между собой.

Происхождение шестидесятеричной системы счисления у вавилонян связано, как полагают ученые, с тем, что вавилонская денежная и весовая единицы измерения подразделялись в силу исторических условий на 60 равных частей:

1 талант = 60 мин;

Шестидесятые доли были привычны в жизни вавилонян. Вот почему они пользовались шестидесятеричными дробями, имеющими знаменателем всегда число 60 или его степени: 602 = 3600, 603 = 216000 и т.д. В этом отношении шестидесятеричные дроби можно сравнить с нашими десятичными дробями.

Вавилонская математика оказала влияние на греческую математику. Следы вавилонской шестидесятеричной системы счисления удержались в современной науке при измерении времени и углов. До наших дней сохранилось деление часа на 60 мин., минуты на 60 с, окружности на 360 градусов, градуса на 60 мин., минуты на 60с.

Вавилоняне внесли ценный вклад в развитие астрономии. Шестидесятеричными дробями пользовались в астрономии ученые всех народов до XVII века, называя их астрономическими дробями. В отличие от них, дроби общего вида, которыми пользуемся мы, были названы обыкновенными.

2.1.5. Нумерация и дроби в Древней Греции

В Древней Греции арифметику тАУ учение об общих свойствах чисел тАУ отделяли от логистики тАУ искусства исчисления. Греки считали, что дроби можно использовать только в логистике. Здесь мы впервые встречаемся с общим понятием дроби вида m/n. Таким образом, можно считать, что впервые область натуральных чисел расширилась до области дополнительных рациональных чисел в Древней Греции не позднее V столетия до н. э. Греки свободно оперировали всеми арифметическими действиями с дробями, но числами их не признавали.

В Древней Греции существовали две системы письменной нумерации: аттическая и ионийская или алфавитная. Они были так названы по древнегреческим областям - Аттика и Иония. В аттической системе, названной также геродиановой, большинство числовых знаков являются первыми буквами греческих соответствующих числительных, например, ГЕNTE (генте или центе) тАУ пять, ΔЕКА (дека) тАУ десять и т.д. Эту систему применяли в Аттике до I века н.э., но в других областях Древней Греции она была еще раньше заменена более удобной алфавитной нумерацией, быстро распространившейся по всей Греции.

Греки употребляли наряду с единичными, ВлегипетскимиВ» дробями и общие обыкновенные дроби. Среди разных записей употреблялась и такая: сверху знаменатель, под ним тАУ числитель дроби. Например, 5/3 означало три пятых и т.д.

2.1.6. Нумерация и дроби на Руси

Как свидетельствуют старинные памятники русской истории, наши предки-славяне, находившиеся в культурном общении с Византией, пользовались десятичной алфавитной славянской нумерацией, сходной с ионийской. Над буквами-числами ставился особый знак, названный титло. Для обозначения тысячи применялся другой знак, который приставлялся слева от букв.

В русских рукописных арифметиках XVII века дроби называли долями, позднее Влломаными числамиВ». В старых руководствах находим следующие названия дробей на Руси:

1/2 - половина, полтина1/3 тАУ треть
1/4 тАУ четь1/6 тАУ полтреть
1/8 - полчеть1/12 тАУполполтреть
1/16 - полполчеть1/24 тАУ полполполтреть (малая треть)
1/32 тАУ полполполчеть (малая четь)1/5 тАУ пятина
1/7 - седьмина1/10 - десятина

Славянская нумерация употреблялась в России до XVI века, затем в страну начала постепенно проникать десятичная позиционная система счисления. Она окончательно вытеснила славянскую нумерацию при Петре I.

2.1.7. Дроби в других государствах древности

В китайской ВлМатематике в девяти разделахВ» уже имеют место сокращения дробей и все действия с дробями.

У индийского математика Брахмагупты мы находим достаточно развитую систему дробей. У него встречаются разные дроби: и основные, и производные с любым числителем. Числитель и знаменатель записываются так же, как и у нас сейчас, но без горизонтальной черты, а просто размещаются один над другим.

Арабы первыми начали отделять чертой числитель от знаменателя.

Леонардо Пизанский уже записывает дроби, помещая в случае смешанного числа, целое число справа, но читает так, как принято у нас. Иордан Неморарий (XIII ст.) выполняет деление дробей с помощью деления числителя на числитель и знаменателя на знаменатель, уподобляя деление умножению. Для этого приходится члены первой дроби дополнять множителями:

В XV тАУ XVI столетиях учение о дробях приобретает уже знакомый нам теперь вид и оформляется приблизительно в те самые разделы, которые встречаются в наших учебниках.

Следует отметить, что раздел арифметики о дробях долгое время был одним из наиболее трудных. Недаром у немцев сохранилась поговорка: ВлПопасть в дробиВ», что означало тАУ зайти в безвыходное положение. Считалось, что тот, кто не знает дробей, не знает и арифметики.

2.1.8. Десятичные дроби

Со временем практика измерений и вычислений показала, что проще и удобнее пользоваться такими мерами, у которых отношение двух ближайших единиц длины было бы постоянным и равнялось бы именно десяти тАУ основанию нумерации. Этим требованиям отвечает метрическая система мер.

Она возникла во Франции как одно из следствий буржуазной революции. Новые меры должны были удовлетворять следующим требованиям:

основой общей системы мер должна быть единица длины;

Во Франции за основную меру длины приняли одну десятимиллионную часть четверти земного меридиана и назвали ее метром (от греческого слова ВлметронВ», означающего ВлмераВ»). На основании измерений меридиана, сделанных французскими учеными Мешеном и Деламбром, был изготовлен впоследствии платиновый эталон метра. Число 10 легло в основу подразделений метра. Вот почему метрическая система мер, применяемая ныне в большинстве стран мира, оказалась тесно связанной с десятичной системой счисления и с десятичными дробями.

Однако следует отметить, что европейцы не первые, кто пришел к необходимости использовать десятичные дроби в математике.

Зарождение и развитие десятичных дробей в некоторых странах Азии было тесно связано с метрологией (учением о мерах). Уже во II веке до н.э. там существовала десятичная система мер длины.

Примерно в III веке н.э. десятичный счет распространился на меры массы и объема. Тогда и было создано понятие о десятичной дроби, сохранившей, однако метрологическую форму.

Например, в Китае в Х веке существовали следующие меры массы: 1 лан = 10 цянь = 102 фэнь = 103 ли = 104 хао = 105 сы = 106 хо.

Если вначале десятичные дроби выступали в качестве метрологических, конкретных дробей, то есть десятых, сотых и т.д. частей более крупных мер, то позже они по существу стали все более приобретать характер отвлеченных десятичных дробей. Целую часть стали отделять от дробной особым иероглифом ВлдяньВ» (точка). Однако в Китае как в древние, так и в средние века десятичные дроби не имели полной самостоятельности, оставаясь в той или иной мере связанными с метрологией.

Более полную и систематическую трактовку получают десятичные дроби в трудах среднеазиатского ученого ал-Каши в XV веке. Независимо от него, в 80-тых годах XVI века десятичные дроби были ВлоткрытыВ» заново в Европе нидерландским математиком Стевином.

С начала XVII века начинается интенсивное проникновение десятичных дробей в науку и практику. В Англии в качестве знака, отделяющего целую часть от дробной, была введена точка. Запятая, как и точка, в качестве разделительного знака была предложена в 1617 году математиком Непером.

Развитие промышленности и торговли, науки и техники требовали все более громоздких вычислений, которые с помощью десятичных дробей легче было выполнять. Широкое применение десятичные дроби получили в XIX веке после введения тесно связанной с ними метрической системы мер и весов. Например, в нашей стране в сельском хозяйстве и промышленности десятичные дроби и их частный вид тАУ проценты тАУ применяются намного чаще, чем обыкновенные дроби.

2.1.8.1. Проценты

Слово ВлпроцентВ» происходит от латинских слов pro centum, что буквально означает Влза сотнюВ» или Влсо стаВ». Процентами очень удобно пользоваться на практике, так они выражают части целых чисел в одних и тех же сотых долях. Это дает возможность упрощать расчеты и легко сравнивать части между собой и с целым.

Проценты были особенно распространены в Древнем Риме. Римляне называли процентами деньги, которые платил должник заимодавцу за каждую сотню. От римлян проценты перешли к другим народам Европы.

Ныне процент тАУ это частный вид десятичных дробей, сотая доля целого (принимаемого за единицу). В некоторых вопросах иногда применяют и более мелкие, тысячные доли, так называемые промилле (от латинского pro mille тАУ Влс тысячиВ»), обозначаемые тА° по аналогии со знаком процента - %. Однако на практике в большинстве случаев ВлтысячныеВ» - слишком мелкие доли, десятые же доли слишком крупные. Поэтому больше всего удобны сотые доли, иначе говоря, проценты.

В нашей стране ими пользуются при составлении и учете выполнения производственных планов в промышленности и сельском хозяйстве. при разных денежных расчетах.

Таким образом, исторически первым расширением понятия о числе является присоединение к множеству натуральных чисел множества всех дробных чисел.

2.2. Отрицательные числа

Обходиться только натуральными числами неудобно. Например, ими нельзя вычесть большее из меньшего. Для такого случая были введены отрицательные числа: китайцами тАУ в Х в. до н. э., индийцами тАУ в VII веке, европейцами тАУ только в XIII веке.

2.2.1. Отрицательные числа в Древней Азии

Положительные количества в китайской математике называли ВлченВ», отрицательные тАУ ВлфуВ»; их изображали разными цветами: ВлченВ» - красным, ВлфуВ» - черным. Такой способ изображения использовался в Китае до середины XII столетия, пока Ли Е не предложил более удобное обозначение отрицательных чисел тАУ цифры, которые изображали отрицательные числа, перечеркивали черточкой наискось справа налево.

В V-VI столетиях отрицательные числа появляются и очень широко распространяются в индийской математике. В Индии отрицательные числа систематически использовали в основном так, как это мы делаем сейчас.

Уже в произведении выдающегося индийского математика и астронома Брахмагупты (598 тАУ около 660 гг.) мы читаем: Вл имущество и имущество есть имущество, сумма двух долгов есть долг; сумма имущества и нуля есть имущество; сумма двух нулей есть нультАж Долг, который отнимают от нуля, становится имуществом, а имущество тАУ долгом. Если нужно отнять имущество от долга, а долг от имущества, то берут их суммуВ».

Отрицательными числами индийские математики пользовались при решении уравнений, причем вычитание заменяли добавлением с равнопротивоположным числом.

Вместе с отрицательными числами индийские математики ввели понятие ноль, что позволило им создать десятеричную систему исчисления. Но долгое время ноль не признавали числом, ВлnullusВ» по- латыни тАУ никакой, отсутствие числа. И лишь через X веков, в XVII-ом столетии с введением системы координат ноль становится числом.

2.2.2. Развитие идеи отрицательного количества в Европе

В Европе к идее отрицательного количества достаточно близко подошел в начале XIII столетия Леонардо Пизанский, однако в явном виде отрицательные числа применил впервые в конце XV столетия французский математик Шюке.

Современное обозначение положительных и отрицательных чисел со знаками Вл + В» и Вл - В» применил немецкий математик Видман, однако еще в ХVI столетии много математиков (например, Виет) не признавали отрицательных чисел.

Натуральные числа, противоположные им (отрицательные) числа и ноль называются целыми числами. Целые и дробные числа на 2-ом уровне обобщения получили общее название - рациональные числа. Их называли также относительными, потому что любое их них можно представить отношением двух целых чисел. Каждое рациональное число можно представить как бесконечную периодическую десятичную дробь.

С помощью рациональных чисел можно осуществлять различные измерения (например, длины отрезка при выбранной единице масштаба) с любой точностью. То есть совокупность рациональных чисел достаточна для удовлетворения большинства практических потребностей.

3. Действительные числа

3.1. Иррациональные числа

Еще в Древнем Египте и Вавилоне ХХ веков назад были известны так называемые несоизмеримые отрезки (, , πтАж), которые нельзя было выразить отношением, относительными, рациональными числами.

Точно не известно, исследование каких вопросов привело к открытию несоизмеримости. Это могло произойти:

в геометрических расчетах при нахождении общей меры стороны и диагонали квадрата;

Речь шла об отыскании и исследовании величины, которую мы теперь обозначаем . Открытие факта, что между двумя отрезками тАУ стороной и диагональю квадрата тАУ не существует общей меры, привело к настоящему кризису основ, по крайней мере, древнегреческой математики.

Индийцы рассматривали иррациональные числа как числа нового вида, но допускающие над ними такие же арифметические действия, как и над рациональными числами. Например, индийский математик Бхаскара уничтожает иррациональность в знаменателе, умножая числитель и знаменатель на тот же самый иррациональный множитель. У него мы встречаем выражения:

Развивая тригонометрию как самостоятельную научную дисциплину, азербайджанский ученый XIII столетия Насретдин ат-Туси (1201- 1274 гг.) трактует соотношение несоизмеримых величин как числа: ВлКаждое из этих соотношений может быть названо числом, которое измеряется единицей так же само, как один из членов соотношения обозначается другим из этих членовВ». Похожую трактовку числа давал и Омар Хайям.

В Европе существование геометрических несоизмеримых величин в средние века не оспаривалось, но для многих иррациональные числа были лишь символами, лишенными точно определенного содержания, поэтому их называли ВлглухимиВ», ВлнедействительнымиВ», ВлфиктивнымиВ» и т.д.

Только после появления геометрии Декарта (1637 г) началось применение иррациональных, как впрочем, и отрицательных чисел. Идеи Декарта привели к обобщению понятия о числе. Между точками прямой и числами было определено взаимно однозначное соответствие. В математику была введена переменная величина.

В начале XVIII столетия существовало три понятия иррационального числа:

иррациональное число рассматривали как корень -ой степени из целого или дробного числа, когда результат извлечения корня нельзя выразить ВлточноВ» целым или дробным числом;

иррациональное числоиррациональным

Позднее Эйлер, Ламберт показали, что иррациональные числа можно представить бесконечными непериодическими десятичными дробями (например, π = 3,141592тАж).

Свое дальнейшее развитие теория иррациональных чисел получила во второй половине XIX века в трудах Дедекинда, Кантора и Вейерштрасе в связи с потребностями математического анализа.

Рациональные и иррациональные числа на 3-ем уровне обобщения образовали действительные числа.

3.2. Алгебраические и трансцендентные числа

Действительные числа иногда подразделяют также на алгебраические и трансцендентные.

Алгебраическими называют числа, которые являются корнями алгебраических многочленов с целыми коэффициентами, например, , , 4,. Все остальные (неалгебраические) числа относятся к трансцендентным. Так как каждое рациональное число p/q является корнем соответствующего многочлена первой степени с целыми коэффициентами qx тАУ, то все трансцендентные числа иррациональны.

Выделим характерные особенности рассмотренных (натуральных, рациональных, действительных) чисел: они моделируют только одно свойство тАУ количество; они одномерны и все изображаются точками на одной прямой, называемой координатной осью.

4. Комплексные числа

4.1. Мнимые числа

Еще более странными, чем иррациональные, оказались числа новой природы, открытые итальянским ученым Кардано в 1545 году. Он показал, что система уравнений , не имеющая решений во множестве действительных чисел, имеет решения вида , . Нужно только условиться действовать над такими выражениями по правилам обычной алгебры и считать, чтоВ· = -.

Кардано называл такие величины Влчисто отрицательнымиВ» и даже Влсофистически отрицательнымиВ», считал их бесполезными и старался не употреблять.

Долгое время эти числа считали невозможными, несуществующими, воображаемыми. Декарт назвал их мнимыми, Лейбниц тАУ Влуродом из мира идей, сущностью, находящейся между бытием и небытиемВ».

В самом деле, с помощью таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение какой-нибудь величины.

Мнимым числам не было места на координатной оси. Однако ученые заметили, что если взять действительное число на положительной части координатной оси и умножить его на , то получим мнимое число , неизвестно где расположенное. Но если это число еще раз умножить на , то получим -, то есть первоначальное число, но уже на отрицательной части координатной оси. Итак, двумя умножениями на мы перебросили число с положительного в отрицательные, и ровно на середине этого броска число было мнимым. Так нашли место мнимым числам в точках на мнимой координатной оси, перпендикулярной к середине действительной координатной оси. Точки плоскости между мнимой и действительной осями изображают числа, найденные Кардано, которые в общем виде a + bВ·i содержат действительные числа а и мнимые bВ·i в одном комплексе (составе), поэтому называются комплексными числами.

Это был 4-ый уровень обобщения чисел.

Постепенно развивалась техника операций над мнимыми числами. На рубеже XVII и XVII веков была построена общая теория корней -ных степеней сначала из отрицательных, а затем из любых комплексных чисел, основанная на следующей формуле английского математика А. Муавра:

С помощью этой формулы можно было также вывести формулы для косинусов и синусов кратных дуг.

Леонард Эйлер вывел в 1748 году замечательную формулу:

,

которая связывала воедино показательную функцию с тригонометрической. С помощью формулы Эйлера можно было возводить число е в любую комплексную степень. Любопытно, например, что . Можно находить sin иcos комплексных чисел, вычислять логарифмы таких чисел и т.д.

Долгое время даже математики считали комплексные числа загадочными и пользовались ими только для математических манипуляций. Так, швейцарский математик Бернулли применял комплексные числа для решения интегралов. Чуть позже с помощью мнимых чисел научились выражать решения линейных дифференциальных уравнений с постоянными коэффициентами. Такие уравнения встречаются, к примеру, в теории колебаний материальной точки в сопротивляющейся среде.

4.2. Геометрическое истолкование комплексных чисел

Около 1800-го года сразу несколько математиков (Вессель, Арган, Гаусс) поняли, что комплексными числами можно моделировать векторные величины на плоскости.

Если действительные числа (состоящие из одного элемента) одномерны тАУ они размещаются на одной координатной оси. Комплексные числа состоят из двух элементов, для их представления необходима уже плоскость и две координатные оси. Это значит, что они двумерны.

Оказалось, что комплексное число z = a + b В· i можно изобразить точкой М(a,b) на координатной плоскости. Позднее выяснили, что удобнее всего изображать число не самой точкой М, а в виде вектора , идущего из начала координат в точку с координатами а и b. Вектор можно задавать не только его координатами a и, но также длиной r и углом φ, который он образует с положительным направлением оси абсцисс. При этом a = r В· cos φ, b = r В· sin φ и число z принимает видz = r В·(cos φ + i В· sin φ), который называется тригонометрической формой комплексного числа. Число r называют модулем комплексного числа z и обозначают . Число φ называют аргументом z и обозначают Arg Z. Заметим, что если z = 0, значение Arg Z не определено, а при z ≠ 0 оно определено с точностью до кратного 2π. Упомянутая ранее формула Эйлера позволяет записать число z в виде z = r В· eφ (показательная форма комплексного числа)

Геометрическое истолкование комплексных чисел позволило определить многие понятия, связанные с функцией комплексного переменного, расширило область их применения.

5. Векторные числа

В дальнейшем стали разыскивать некие трехмерные числа, которые моделировали бы векторные величины в пространстве с его тремя координатными осями.

Бился над этой задачей и ирландский ученый Гамильтон. После 15-ти лет работы в 1843 году Гамильтон придумал таки трехмерные числа a + bi +cj + dk, где i = j = k = и откладываются каждый на своей оси. Такие числа - комплексные a + bi и мнимые cj и dk по двум дополнительным осям тАУ Гамильтон назвал кватернионами (quaterni в переводе с латыни тАУ четыре). Позже, в 1853 году, как вариант кватернионов, Гамильтон предложил более удобные числа bi + cj + dk и назвал их векторными числами. Они и обобщили все предыдущие числа на 5-ом уровне обобщения.

6. Матричные числа

Алгебраические операции над векторными величинами создали многоэлементные числовые объекты, названные по предложению Эйнштейна тензорными величинами. Для их моделирования Артур Кэли в 1850 году ввел числа, в которых элементы (более трех) записывались уже квадратными и прямоугольными таблицами (матрицами) и рассматривались как единый числовой объект.

Векторные числа + тензорные величины породили матричные числа. Это был 6-ой уровень обобщения чисел.

Выделим особенность всех сложных (комплексных, векторных, матричных) чисел: они моделируют сразу два свойства тАУ количество и направление моделируемых величин.

7. Трансфинитные числа

Наконец, в 1883 году немецкий ученый Георг Кантор, по-видимому, оценив многовековую историю последовательного обобщения чисел, в которой натуральные числа были обобщены рациональными, а те в свою очередь тАУ действительными, те тАУ комплексными, те тАУ векторными, те тАУ матричными, создал на этом материале свою теорию трансфинитных (бесконечных, запредельных) чисел.

Для этого он назвал множеством всякий набор элементов, который можно сопоставить с частью самого себя, как например, целые числа сопоставляются с четными числами:Кантор заметил, что такое множество должно содержать бесконечное число элементов. А если эти элементы сопо

Вместе с этим смотрят:


"Инкарнация" кватернионов


* Алгебры и их применение


*-Алгебры и их применение


10 способов решения квадратных уравнений


Bilet