Мир живого
1. Особенности живых систем.
1.1. Существенные черты живых систем.
Жизнь на Земле чрезвычайно многообразна. Она представлена ядерными и доядерными одно- и многоклеточными существами. Богатейший мир многоклеточных существ представлен тремя царствами - грибами, растениями и животными. Каждое из этих царств в свою очередь представлено разнообразными типами, классами, отрядами, семействами, родами, видами, популяциями и особями. Все эти таксоны являются результатом исторического развития мира живого, его эволюции. Число видов ныне существующих растений достигает более 500 тыс., из них цветковых примерно 300 000 видов. Царство животных не менее разнообразно, чем царство растений, а по числу видов животные превосходят растения. Описано около 1 200 000 видов животных (из них около 900 000 видов тАУ членистоногих, 110 000 тАУ моллюсков, 42 000 тАУ хордовых животных).
Но мир живого еще имеет и структурно-инвариантный аспект: живое обладает молекулярной, клеточной, тканевой и иной структурностью. Подавляющее большинство ныне живущих организмов (кроме вирусов и фагов) состоит из клеток. По признаку клеточного строения все живые организмы делятся на доклеточные и клеточные. Неклеточные формы жизни - вирусы (открытые в 1892 г. русским микробиологом Д.И. Ивановским) и фаги. Вирусы занимают промежуточное место между живым и неживым. Они состоят из белковых молекул и нуклеиновых кислот; не имеют собственного обмена веществ; вне организма или клетки они не проявляют признаков жизни. Все клеточные подразделяются на четыре царства: безъядерные (бактерии, цианеи), растения (багрянки, настоящие водоросли, высшие растения), грибы (низшие и высшие) и, наконец, животные (простейшие и многоклеточные). Безъядерные, видимо, относятся к самым древним формам жизни на Земле. Кроме того, существует множество сообществ разной сложности, включающих как особей одного вида, так и особей, принадлежащих к разным видам.
Биология ХХ века углубила понимание существенных черт живого, раскрыла молекулярные основы жизни. В основе современной биологической картины мира лежит представление о том, что мир живого - это грандиозная Система высокоорганизованных систем. Любая система (и в неорганической и в органической природе) состоит из элементов (компонентов) и связей между ними (структуры), которые объединяют данную совокупность элементов в единое целое. Биологическим системам свойственны свои специфические элементы и особенные типы связей между ними.
Сначала об элементах и компонентах биологических систем. В такого рода элементах и компонентах выражена дискретная составляющая живого. Живые объекты, системы в природе относительно обособлены друг от друга (особи, популяции, виды). Любая особь многоклеточного животного состоит из клеток. А любая клетка и одноклеточные существа тАУ из определенных органелл. Органеллы образуются дискретными, обычно высокомолекулярными, органическими веществами. И кроме того, среди живых систем нет двух одинаковых особей, популяций и видов.
В то же время сложная организация немыслима без целостности. Целостность порождается структурой системы, типом связей между ее элементами. Целостность биологическими систем качественно отличается от целостности неживого, и прежде всего тем, что целостность живого поддерживается в процессе развития.
Кроме того, всем живым системам свойственны следующие существенные черты:
o обмен веществ,
o подвижность,
o раздражимость,
o рост,
o размножение,
o приспособляемость.
Каждое из этих свойств порознь может встречаться и в неживой природе и поэтому само по себе не может рассматриваться как специфическое для живого. Однако все вместе они никогда не характеризуют объекты неживой природы. Все вместе они свойственны только миру живого и в своем единстве являются критериями, отличающими живое от неживого.
Живые системы тАУ открытые системы, они постоянно обмениваются веществами и энергией со средой. Для них характерна отрицательная энтропия (увеличение упорядоченности), увеличивающаяся в процессе органической эволюции. В живых системах очень ярко проявляется способность к самоорганизации материи.
Современная молекулярная биология показала поразительное единство живой материи на всех уровнях ее развития - от простейшего микроорганизма до высшего млекопитающего. Выяснилось, что существует только два основных класса молекул, взаимодействие которых определяет то, что мы называем жизнью. Это - нуклеиновые кислоты и белки. Взятые вместе, они и образуют основу живого.
Живой организм - это множественная система химических процессов, в ходе которых происходит постоянное разрушение молекулярных органических структур и их воспроизводство. Основой воспроизводства является синтез белков. Этот синтез происходит а клетках организма при помощи нуклеиновых кислот - ДНК и РНК. Белки - это очень сложные макромолекулы, структурными элементами которых являются аминокислоты. Структура белка задается последовательностью образующих его аминокислот. Причем, характерно то, что из 100 известных в органической химии аминокислот в образовании белков всех организмов используется только 20 аминокислот. Почему именно эта двадцатка аминокислот, а не какие-либо другие, синтезирует белки нашего органического мира, до сих пор так и не ясно.
Нуклеиновые кислоты обладают более простой структурой. Они образуют длинные полимерные цеи, звеньями которых выступают нуклеотиды - соединения азотистого основания, сахара и остатка фосфорной кислоты. В ДНК основаниями служат аденин, гуанин, цитозин и тимин. Эти азотистые основания присоединяются к сахару по одному в разной последовательности. Аденин и гуанин являются пуринами, а цитозин, тимин и урацил - пирамидинами. В РНК тимин заменен урацилом, а сахар дезоксирибоза в ДНК - рибозой в РНК.
1.2.Основные уровни организации живого
Системно-структурные уровни организации многообразных форм живого достаточно многочисленны. Среди них: молекулярный, клеточный, тканевой, органный, онтогенетический, популяционный, видовой, биогеоценотический, биосферный. Могут быть выделены и другие уровни.
Но во всем таком многообразии уровней должны быть выделены некоторые основные уровни. Критерием выделения основных уровней должно быть выступают специфические дискретные структуры и фундаментальные биологические взаимодействия. На основании таких критериев достаточно четко выделяются:
o молекулярно-генетический,
o онтогенетический,
o популяционно-видовой,
o биогеоценотический уровни организации живого.
1.2.1.Молекулярно-генетический уровень
Знание закономерностей молекулярно-генетического уровня организации живого тАУ необходимая предпосылка для ясного понимания жизненных явлений, происходящих на всех остальных уровнях организации жизни. В ХХ веке развитие хромосомной теории наследственности, анализ мутационного процесса, изучение строения хромосом, фагов и вирусов, развитие молекулярной биологии, биохимии позволило раскрыть основные черты организации элементарных генетических структур и связанных с ними явлений.
Выяснено, что основные структуры на этом уровне несут в себе коды наследственной информации, передаваемой от поколения к поколению. Эти структуры представлены молекулами ДНК (дезоксирибинуклеиновой кислотой), дифференцированными по длине на элементы кода тАУ триплеты азотистых оснований, образующих гены. Гены на этом уровне организации жизни представляют элементарные единицы. Основными элементарными явлениями, связанными с генами, можно считать способность их к конвариантной редупликации, к локальным структурным изменениям (мутациям) и способность передавать хранящуюся в них информацию внутриклеточным управляющим системам.
Каждая молекула ДНК представляет собой две спаренные нити, закрученные в спирали. Каждая из этих нитей соединяется с другой водородными связями; причем, каждая из таких связей попарно соединяет либо аденин одной цепи с тимином другой, либо гуанин с цитозином. Конвариантная редупликация (самовоспроизведение с изменениями) происходит по матричному принципу путем разрыва водородных связей двойной спирали ДНК с участием фермента ДНК-полимеразы. Затем каждая из нитей на своей поверхности строит себе соответствующую нить, после чего новые нити комплементарно соединяются между собой. Пиримидиновые и пуриновые основания комплементарных нитей тАЬсшиваютсятАЭ между собой ДНК-полимеразой. Этот процесс осуществляется очень быстро. Так, на самосборку ДНК кишечной палочки, состоящей примерно из 40 тыс. пар нуклеотидов, требуется всего 100 секунд.
В синтезе белков важная роль принадлежит также и РНК. Синтез белка происходит в особых областях клетки - рибосомах. Рибосомы иногда образно называют тАЬфабриками белкатАЭ. Существует по крайне мере три типа РНК:
1) высокомолекулярная РНК, локализующаяся в рибосомах;
2) информационная - РНК, образующаяся в ядре клетки;
3) транспортная - РНК.
В ядре генетический код переносится с молекул ДНК на молекулу информационной - РНК. Генетическая информация о последовательности и характере синтеза белка переносится из ядра молекулами информационной - РНК в цитоплазму к рибосомам и там участвует в синтезе белка. Перенос и присоединение отдельных аминокислот к месту синтеза осуществляется транспортной - РНК. Белок, содержащий тысячи аминокислот, в живой клетке синтезируется за 5 тАУ 6 мин.
Редупликация, основанная на матричном копировании, делает возможным сохранение не только генетической нормы, но и отклонений от нее, т. е. мутаций (основа процесса эволюции).
Таким образом, как при конвариантной редупликации, так и при внутриклеточной передаче информации используют единый тАЬматричный принциптАЭ: исходные молекулы ДНК и РНК т.е. являются матрицами, рядом с которыми строятся соответствующие специфические макромолекулы. Молекулы ДНК играют роль кода, в котором как бы тАЬзашифрованытАЭ все синтезы белковых молекул в клетках организма. Более того, оказалось, что все биологические организмы, известные нам на Земле, используют одинаковый генетический код!
В настоящее время молекулярной биологией успешно дешифруется заложенный в структуре нуклеиновых кислот код, служащий матрицей при синтезе специфических белковых структур.
1.2.2.Онтогенетический уровень
Следующий, более сложный и комплексный уровень организации жизни на Земле - онтогенетический. Онтогенетический уровень связан с жизнедеятельностью отдельных биологических особей, дискретных индивидуумов. Индивид, особь тАУ неделимая и целостная единица жизни на Земле. В многобразной земной органической жизни особи имеют различное морфологическое содержание. Здесь - и одноклеточные, состоящие из ядра, цитоплазмы, множества органелл и мембран, макромолекул и т. д. Здесь - и многоклеточная особь, образованная из миллионов и миллиардов клеток. Сложность многоклеточных особей неизмеримо выше сложности одноклеточных. Но и одноклеточная и многоклеточная особи обладают системной организацией и регуляцией и выступают как единое целое.
Причем, важно то, что характеристика особи не может быть исчерпана рассмотрением физико-химических свойств макромолекул, входящих в его состав. Разделить особь на части без потери тАЬиндивидуальноститАЭ невозможно. Это позволяет выделить онтогенетический уровень как особый уровень организации жизни. Таким образом, на онтогенетическом уровне единицей жизни служит особь тАУ с момента ее возникновения до смерти.
Развитие особи от образования зародышевой клетки до смерти составляет содержание процесса онтогенеза. Онтогенез состоит из роста, перемещения отдельных структур, дифференциации и усложнения интеграции организма. По существу, онтогенез тАУ это процесс развертывания, реализации наследственной информации, закодированной в управляющих структурах зародышевой клетки. На онтогенетическом уровне происходит не только реализация наследственной информации, но и испытание, проверка согласованности и работы управляющих систем во времени и пространстве, присособление к среде в пределах особи и др. Многие отрасли биологии изучают процессы и явления, происходящие в особи, согласованное функционирование ее органов и систем, механизм их работы, роль в жизнедеятельности организма, взаимоотношение органов, поведение организмов, приспособительные изменения и т.п.
Причины развития организма в онтогенезе являются предметом обстоятельного и интенсивного изучения эмбриологами, биохимиками, генетиками. Но все еще не создана общая теория онтогенеза и не показаны основные причины и факторы, определяющие строгую упорядоченность процесса онтогенеза. Имеющиеся результаты позволяют понять только некоторые отдельные процессы, обеспечивающие индивидуальное развитие организма. Прежде всего, это касается изучения дифференциации, т.е. образования разнообразных, специализированных для выполнения определенных функций частей организма.
1.2.3.Популяционно-видовой уровень
Особи в природе не абсолютно изолированы друг от друга, а объединены более высоким рангом биологической организации. Это - популяционно-видовой уровень. Он возникает там и тогда, где и когда происходит объединение особей в популяции, а популяций в виды. Популяции - это совокупность особей одного вида, населяющих определенную территорию, более или менее изолированную от соседних совокупностей того же вида. Такие объединения характеризуются появлением новых свойств и особенностей в живой природе, отличных от свойств молекулярно-генетического и онтогенетического уровней.
Популяции и виды, несмотря на то, что состоят из множества особей, целостны. Но их целостность базируется на иных основаниях, чем целостность на молекулярно-генетическом и онтогенетическом уровнях. Целостность популяций и видов обеспечивается взаимодействием особей в популяциях и воссоздается через обмен генетическим материалом в процессе полового размножения. Популяции и виды как надиндивидуальные образования способны к существованию в течение длительного времени и к самостоятельному эволюционному развитию. Жизнь отдельной особи при этом находится в зависимости от процессов, протекающих в популяциях.
Популяции выступают как элементарные, далее неразложимые эволюционные единицы, представляющие собой генетически открытые системы (особи из разных популяций иногда скрещиваются и популяции обмениваются генетической информацией). На популяционно-видовом уровне особую роль приобретают процессы панмиксии (свободное скрещивание) и отношения между особями внутри популяции и вида. Виды, всегда выступающие как система популяций, являются наименьшими, в природных условиях генетически закрытыми системами (скрещивание особей разных видов в природе в подавляющем большинстве случаев не ведет к появлению плодовитого потомства). Все это приводит к тому, что популяции оказываются элементарными единицами, а виды тАУ качественными этапами процесса эволюции.
Популяция тАУ основная элементарная структура на популяционно-видовом уровне, а элементарное явление на этом уровне тАУ изменение генотипического состава популяции; элементарный материал на этом уровне тАУ мутации. В синтетической теории эволюции выделены элементарные факторы, действующие на этом уровне: мутационный процесс, популяционные волны, изоляция и естественный отбор. Каждый из этих факторов может оказать то или иное тАЬдавлениетАЭ, т. е. степень количественного воздействия на популяцию, и в зависимости от этого вызывать изменения в генотипическом составе популяции.
Популяции и виды всегда существуют в определенной системно организованной природной среде, которая включает в себя и биотические и абиотические факторы. Такие внешние для популяций и видов природные системы образуют еще один уровень организации живого - биогеоценотический.
1.2.4.Биогеоценотический уровень
Популяции разных видов взаимодействуют между собой. В ходе взаимодействия они объединяются в сложные системы тАУ биоценозы.
Биоценоз тАУ совокупность растений, животных, грибов и микроорганизмов, населяющих участок среды с более или менее однородными условиями существования и характеризующихся определенными взаимосвязями между собой и средой проживания. Компоненты, образующие биоценоз, взаимозависимы. Изменения, касающиеся только одного вида, могут сказаться на всем биоценозе и даже вызвать его распад. Биоценозы входят в качестве составных частей в еще более сложные системы (сообщества) - биогеоценозы.
Биогеоценоз (экосистема, экологическая система) тАУ взаимообусловленный комплекс живых и абиотических компонентов, связанных между собой обменом веществ и энергией. Биогеоценоз тАУ одна из наиболее сложных природных систем. Биогеоценозы тАУ продукт совместного исторического развития видов, различающихся по систематическому положению; виды при этом приспосабливаются друг к другу. Биогеоценозы тАУ среда для эволюции входящих в них популяций.
Биогеоценоз - это целостная система. Выпадание одного или нескольких компонентов биогеоценоза может привести к разрушению целостности биогеоценоза в круговороте веществ, что часто ведет к необратимому нарушению равновесия и гибели биогеоценоза как системы. Структура биогеоценоза меняется в ходе эволюции видов: виды в биогеоценозе действуют друг на друга не только по принципу прямой, но и обратной связи (в том числе посредством изменения ими абиотических условий). В целом жизнь биогеоценоза регулируется в основном силами, действующими внутри самой системы, т. е. можно говорить о саморегуляции биогеоценоза. Биогеоценоз представляет собой незамкнутую систему, имеющую энергетические тАЬвходытАЭ и тАЬвыходытАЭ, связывающие соседние биогеоценозы. Обмен веществ между соседними биогеоценозами может осуществляться в газообразной, жидкой и твердой фазах, а также в форме миграции животных.
Биогеоценоз тАУ уравновешенная, взаимосвязанная и стойкая во времени система, которая является результатом длительной и глубокой адаптации составных компонентов. Это - весьма динамическая и в то же время устойчивая сообщность. Устойчивость биогеоценоза пропорциональная многообразию его компонентов. Чем многообразнее биогеоценоз, тем он, как правило, устойчивее во времени и пространстве. Так, например, биогеоценозы, представленные тропическими лесами, гораздо устойчивее биогеоценозов в зоне умеренного или арктического поясов, так как тропические биогеоценозы состоят из гораздо большего множества видов растений и животных, чем умеренные и тем более арктические биогеоцнозы.
Высокоорганизованные организмы для своего существования нуждаются в более простых организмах; каждая экосистема неизменно содержит как простые, так и сложные компоненты. Биогеоценоз только из бактерий или деревьев никогда не сможет существовать, как нельзя представить экосистему, населенную лишь позвоночными или млекопитающими. Таким образом, низшие организмы в экосистеме - это не какой-то случайный пережиток прошлых эпох, а необходимая составная часть биогеоценоза, целостной системы органического мира, основа его существования и развития, без которой невозможен обмен веществои и энергией между компонентами биогеоценоза. Первичной основой для сложения биогеоценозов служат растения и микроорганизмы, продуценты органического вещества (автотрофы). В ходе эволюции до заселения растениями и микроорганизмами определенного пространства биосферы не может быть и речи о заселении его животными. Растения и микроорганизмы представляют жизненную среду для животных тАУ гетеротрофов. Поэтому и границы биогеоценозов чаще всего совпадают с границами растительных сообществ (фитоценозов).Впоследствии и животные играют важную роль в жизни и эволюции растений, участвуя в круговороте веществ, опылении, распространении плодов и т. д.
Вся совокупность связанных между собой круговоротом веществ и энергии биогеоценозов на поверхности нашей планеты образуют мощную систему биосферы Земли. Верхняя граница жизни в атмосфере достигает примерно 30 км, наибольшее количество организмов встречается на высоте до 100 м. В глубь же Земли (литосфера) основная масса существ сосредоточена в самом верхнем слое тАУ до 10 м, хотя отдельные виды микроорганизмов встречаются в нефтеносных слоях на глубине до 3 км. В океане и морях (гидросфера) зона, богатая живыми организмами, занимает слой воды до 100 тАУ 200 м, но некоторые организмы встречаются и на максимальной глубине тАУ до 11 км. О масштабах деятельности живых организмов свидетельствует присутствие мощных биогенных пород, тысячеметровых толщ известняка, огромных залежей каменного угля и т. п. Рассматривая биосферу Земли как единую экологическую систему, можно убедиться, что живое вещество Земли существенно не уменьшается и не увеличивается в массе, а только переходит из одного состояния в другое.
Раздел биологии, изучающий экологические системы (биоценозы, биогеоценозы, биосферу) называется биогеоценология. Основателем ее был наш выдающийся отечественный ученый В.Н. Сукачев.
Таким образом, молекулярно-генетический, онтогенетический, популяционно-видовой и биоценотический уровни - четыре основных уровня организации жизни на Земле.
2. Возникновение жизни на Земле
2.1. Развитие представлений о происхождении жизни
Происхождение жизни - одна из трех важнейших мировоззренческих проблем, наряду с проблемой происхождения нашей Вселенной и проблемой происхождения человека и общества.
Попытки понять, как возникла и развивалась жизнь на Земле, появились у человека еще в глубокой древности. В античности сложились два противоположных подхода к решению этой проблемы. Первый, религиозно-идеалистический, исходил из того, что возникновение жизни не могло осуществиться естественным, объективным, закономерным образом на Земле; жизнь является следствием божественного творческого акта (креационизм) и потому всем существам свойственна особая, независимая от материального мира тАЬжизненная силатАЭ (vis vitalis), которая и направляет все процессы жизни (витализм).
Наряду с идеалистическим подходом, еще в древности сложился и материалистический подход к этой проблеме, в основе которого лежало представление о том, что живое может возникнуть из неживого, органическое из неорганического под влиянием естественных факторов. Так сложилась концепция самозарождения живого из неживого. Идея самозарождения приобрела широкое распространение во времена Средневековья и Возрождения, когда допускалась возможность самозарождения не только простых, но и довольно высокоорганизованных существ, даже млекопитающих (например, мышей из тряпок). Например, в трагедии В. Шекспира тАЬАнтоний и КлеопатратАЭ Леонид говорит Марку Антонию: тАЬВаши египетские гады заводятся в грязи от лучей вашего египетского солнца. Вот, например, крокодил..тАЭ. Известны попытки Парацельса (1485-1540) разработать рецепты искусственного получения человека (гомункулуса).
Невозможность произвольного зарождения жизни была доказана целым рядом опытов. Итальянский ученый Ф. Реди (1626-1698) экспериментально доказал невозможность самозарождения сколько-нибудь сложных животных. Применение микроскопа в биологических исследованиях способствовало открытию большого разнообразия одноклеточных организмов. На этой основе вновь возродились старые идеи произвольного самозарождения простейших существ. Окончательно версия о самозарождении была развенчана Л. Пастером в середине XIX в. Пастер показал, что не только в запаянном сосуде, но и незакрытой колбе с длинной S - образной горловиной хорошо прокипяченный бульон остается стерильным, потому что в колбу через такую горловину не могут проникнуть микробы. Так было доказано, что в наше время какой бы то ни было новый организм может появиться только от другого живого существа.
Появление жизни на Земле пробовали объяснить занесением ее из других космических миров. В 1865 г. немецкий врач Г. Рихтер выдвинул гипотезу космозоев (космических зачатков), в соответствии с которой жизнь является вечной и зачатки, которые населяют мировое пространство, могут переноситься с одной планеты на другую. Эта гипотеза была поддержана многими выдающимися учеными ХIХ века - В. Томсоном, Г. Гельмгольцем и другими. Сходную гипотезу выдвинул в 1907 г. и известный шведский естествоиспытатель С. Аррениус. Его гипотеза получила название панспермии: во Вселенной вечно существуют зародыши жизни, которые движутся в космическом пространстве по давлением световых лучей; попадая в сферу притяжения планеты, они оседают на ее поверхности и закладывают на этой планете начало живого.
Сейчас уже определенно выяснено, что тАЬазбукатАЭ живого сравнительно проста: в любом существе, живущем на Земле, присутствует 20 аминокислот, пять оснований, два углевода и один фосфат. Существование небольшого числа одних и тех же молекул во всех живых организмах убеждает нас, что все живое должно иметь единое происхождение.
Отрицание возможности самозарождения жизни в настоящее время не противоречит представлениям о принципиальной возможности развития органической природы и жизни в прошлом из неорганической материи. На определенной стадии развития материи жизнь может возникнуть как результат естественных процессов, совершающихся в самой материи. Кроме того, элементарные химические процессы на начальных этапах возникновения и развития жизни могли происходить не только на Земле, но и в других частях Вселенной и в различное время. Поэтому не исключается возможность занесения определенных предпосылочных факторов жизни на Землю из Космоса. Однако в изученной пока человеком части Вселенной только на Земле они привели к формированию и расцвету жизни.
2.2. Возникновения жизни
С позиций современного научного мировоззрения жизнь возникла из неживого вещества, т. е. произошла в результате эволюции материи, есть результат естественных процессов, происходивших во Вселенной. Жизнь - это свойство материи, которое ранее не существовало и появилось в особый момент истории нашей планеты Земля. Возникновение жизни явилось результатом последовательных процессов, протекавших сначала миллиарды лет во Вселенной, а затем на Земле многие миллионы лет. От неорганических соединений к органическим, от органических - к биологическим - таковы последовательные стадии, по которым осуществлялся процесс зарождения жизни.
Возраст Земли исчисляется примерно в 5 млрд. лет. Жизнь существует на Земле, видимо, более 3,5 млрд. лет. Признаки деятельности живых организмов обнаружены многократно в докембрийских породах, рассеянных по всему земному шару.
В сложном процессе возникновения жизни на Земле можно выделить несколько основных этапов. Первый из них связан с процессами образования простейших органических соединений из неорганических.
2.2.1. Образование простых органических соединений
Происхождение жизни связано с протеканием определенных химических реакций на поверхности первичной планеты. Каковы же основные этапы химической эволюции жизни?
На начальных этапах истории Земли она представляла собой раскаленную планету. Вследствие вращения при постепенном снижении температуры атомы тяжелых элементов перемещались к центру, а в поверхностных слоях концентрировались атомы легких элементов (водорода, углерода, кислорода, азота), из которых и состоят тела живых организмов. При дальнейшем охлаждении Земли появились химические соединения: вода, метан, углекислый газ, аммиак, цианистый водород, а также молекулярный водород, кислород, азот. Физические и химические свойства воды (высокий дипольный момент, вязкость, теплоемкость и т. д.) и углерода (трудность образования окислов, способность к восстановлению и образованию линейных соединений) определили то, что они оказались у колыбели жизни.
На этих начальных этапах сложилась первичная атмосфера Земли, которая носила не окислительный, как сейчас, а восстановительный характер. Кроме того, она была богата инертными газами (гелием, неоном, аргоном). Эта первичная атмосфера уже утрачена. На ее месте образовалась вторая атмосфера Земли, состоящая на 20% из кислорода - одного из наиболее химически активных газов. Эта вторая атмосфера - продукт развития жизни на Земле, одно из его глобальных следствий.
Дальнейшее снижение температуры обусловило переход ряда газообразных соединений в жидкое и твердое состояние, а также образование земной коры. Когда температура поверхности Земли опустилась ниже 100В° C произошло сгущение водяных паров и образование воды. Длительные ливни с частыми грозами привели к образованию больших водоемов. В результате активной вулканической деятельности из внутренних слоев Земли на поверхность выносилось много раскаленной массы, в том числе карбидов - соединений металла с углеродом. При взаимодействии карбидов с водой выделялись углеводородные соединения. Горячая дождевая вода как хороший растворитель имела в своем составе растворенные углеводороды, а также газы (аммиак, углекислый газ, цианистый водород), соли и другие соединения, которые могли вступать в химические реакции. Так постепенно на поверхности молодой планеты Земля накапливались простейшие органические соединения. Причем, накапливались в больших количествах. Подсчеты показывают, что только посредством вулканической деятельности на поверхности Земли могло образоваться около 1 0 n кг органических молекул, где n = 1 6 .Это всего на 2-3 порядка меньше массы современной биосферы!
Вместе с тем, и астрономическими исследованиями установлено, что и на других планетах и в космической газопылевой материи имеются углеродные соединения, в том числе и углеводороды.
2.2.2. Возникновение сложных органических соединений
Второй этап биогенеза характеризовался возникновением более сложных органических соединений, в частности, белковых веществ в водах первичного океана. В ту давнюю пору на Земле были благоприятные условия для этих процессов. Высокая температура, грозовые разряды, усиленное ультрафиолетовое излучение приводили к тому, что относительно простые молекулы органических соединений при взаимодействии с другими веществами усложнялись и образовывались углеводы, жиры, аминокослоты, белки и нуклеиновые кислоты.
Возможность такого синтеза была доказана опытами А.М. Бутлерова (1828-1886), который еще в середине прошлого столетия из формальдегида получил углеводы (сахар). В 1951-1957 гг. американский химик С. Миллер из смеси газов (аммиака, метана, водяного пара, водорода) при 70-80В° С и давлении в несколько атмосфер под воздействием электрических разрядов напряжением 60 000 вольт и ультрафиолетовых лучей синтезировал ряд органических кислот, в том числе аминокислот (глицин, аланин, аспарагиновую и глутаминовую кислоты), которые являются материалом для образования белковой молекулы. Таким образом, были смоделированы условия первичной атмосферы Земли, при которых могли образовываться аминокислоты, а при их полимеризации - и первичные белки.
Эксперименты в этом направлении оказались перспективными. Они показали, что (при использовании других соотношений исходных газов и видов источника энергии) путем реакции полимеризации из простых молекул могли быть образованы и более сложные молекулы: белки, липиды, нуклеиновые кислоты и их производные. Позже была доказана возможность синтеза в условиях лаборатории и других сложных биохимических соединений, в том числе белковых молекул (инсулина), азотистых оснований нуклеотидов. Особенно важно то, что лабораторные эксперименты совершенно определенно показали возможность образования белковых молекул в условиях отсутствия жизни.
С определенного этапа в процессе химической эволюции активное участие принимает кислород. В атмосфере Земли кислород мог накапливаться в результате разложения воды и водяного пара под действием ультрафиолетовых лучей Солнца. (Для превращения восстановленной атмосферы первичной Земли в окисленную потребовалось не меньше 1 тАУ 1,2 млрд. лет). С накоплением в атмосфере кислорода восстановленные соединения начали окисляться. Так, при окислении метана образовались метиловый спирт, формальдегид, муравьиная кислота и т. д., которые вместе с дождевой водой попадали в первичный океан. Эти вещества, вступая в реакции с аммиаком и цианистым водородом, дали начало аминокислотам и соединениям типа аденина. Важно и то, что более сложные органические соединения являются более стойкими, чем простые соединения, перед разрушающим действием ультрафиолетового излучения.
Анализ возможных оценок количества органического вещества, которое накопилось неорганическим путем на ранней Земле, впечатляет: по некоторым расчетам (К. Сагана) за 1 млрд. лет над каждым кв. см. земной поверхности образовалось несколько килограммов органических соединений. Если их все растворить в мировом океане, то концентрация раствора была бы приблизительно 1%. Это довольно концентрированный тАЬорганический бульонтАЭ. В таком тАЬбульонетАЭ мог вполне успешно развиваться процесс образования более сложных органических молекул. Таким образом, воды первичного океана постепенно все более насыщались разнообразными органическими веществами, образуя тАЬпервичный бульонтАЭ. И, как показывают расчеты, насыщению такого тАЬорганического бульонатАЭ в немалой степени способствовала еще и деятельность подземных вулканов.
2.2.3. тАЬПервичный бульонтАЭ и образование коацерватов
Дальнейший этап биогенеза связан с концентрацией органических веществ, возникновением белковых тел.
В водах первичного океана концентрация органических веществ увеличивалась, происходило их смешивание, взаимодействие и объединение в мелкие обособленные структуры раствора. Такие структуры легко можно получить искусственно, смешивая растворы разных белков, например, желатина и альбумина. Эти обособленные в растворе органические многомолекулярные структуры наш выдающийся отечественный ученый А.И. Опарин назвал коацерватными каплями или коацерватами. Коацерваты - мельчайшие коллоидальные частицы - капли, обладающие осмотическими свойствами. Коацерваты образуются в слабых растворах. Вследствие взаимодействия противоположных электрических зарядов происходит агрегация молекул. Мелкие сферические частицы возникают потому, что молекулы воды создают вокруг образовавшегося агрегата поверхность раздела.
Исследования показали, что коацерваты имеют достаточно сложную организацию и обладают рядом свойств, которые сближают их с простейшими живыми системами. Так, например, они способны поглощать из окружающей среды разные вещества и увеличиваться в размере. Поглощенные вещества вступают во взаимодействие с соединениями самой капли. Эти процессы в какой-то мере напоминают первичную форму ассимиляции. Вместе с тем, в коацерватах могут происходить и процессы распада, а также выделения продуктов распада. Соотношение между этими процессами у разных коацерватов неодинаково. Выделяются отдельные динамически более стойкие структуры с преобладанием синтетической деятельности. Внешнее сходство структур и некоторых процессов, которые происходят в коацерватах, еще не дает основания для отнесения их к живым системам, потому что они лишены способности к самовоспроизведению и саморегуляции синтеза органических веществ. Но важные предпосылки возникновения живого в них уже содержались.
Прежде всего, коацерваты объясняют появление биологических мембран. Образование мембранной структуры считается самым тАЬтруднымтАЭ этапом химической эволюции жизни. Истинное существо (в виде клетки, пусть даже самой примитивной) не могло оформиться до возникновения мембранной структуры и ферментов. Биологические мембраны, как известно, составляют агрегаты белков и липидов, способные разграничить вещества от среды и придать упаковке молекул прочность. Мембраны могли возникнуть в ходе формирования коацерватов.
Повышенная концентрация органических веществ в коацерватах увеличивала возможность взаимодействия между молекулами и усложнения органических соединений. Коацерваты образовывались в воде при соприк
Вместе с этим смотрят:
25 Экзаменационных билетов по географии за 11 класс с ответами
32-я Стрелковая дивизия (результаты поисковой работы группы "Память" МИВлГУ)