Лекции по матану (III семестр) переходящие в шпоры
1 Двойной интеграл
Рассмотрим в плоскости Оху замкнутую область D, ограниченную линией Г, являющейся замкнутой непрерывной кривой. z = l(P) = f(x,y), P= (x,y) Î D тАУ произвольные ф-ции определенные и ограниченные на D. Диаметром области D наз. наибольшее расстояние между граничными точками. Область D разбивается на n частых областей D1тАжDn конечным числом произв. кривых. Если S тАУ площадь D, то DSi тАУ площадь каждой частной области. Наибольший из диаметров областей обозн l. В каждой частной области Di возьмем произв. точку Pi (xi , Di) Î Di, наз. промежуточной. Если диаметр разбиения D l à 0 , то число n областей Di à ¥. Вычислим зн-ие ф-ции в промежуточных точках и составим сумму:I = f(xi, Di)DSi (1), наз. интегральной суммой ф-ции. Ф-ция f(x,y) наз. интегрируемой в области D если существует конечный предел интегральной суммы.
Двойным интегралом ф-ии f(x,y) по области D наз. предел интегральной суммы при l à 0. Обозн:
или
2 Понятие числового
ряда и его суммы
Пусть задана бесконечная последовательность чисел u1, u2, u3тАж
Выражение u1+ u2+ u3тАж+ un (1) называется числовым рядом, а числа его составляющие- членами ряда.
Сумма конечно числа n первых членов ряда называется n-ной частичной суммой ряда: Sn = u1+.+un
Если сущ. конечный предел: , то его называют суммой ряда и говорят, что ряд сходится, если такого предела не существует, то говорят что ряд расходится и суммы не имеет.
№ 2
1 Условие существования
двойного интеграла
Необходимое, но недостаточное:
Ф-ция f(x,y) интегрируема на замкнутой области D, ограничена на D.
1 достаточный признак существования: если ф-ция f(x,y) непрерывна на замкнутой, огр. области D, то она интегрируема на D.
2 достаточный признак существования: если ф-ция f(x,y) ограничена в замкнутой области D с какой-то границей и непрерывна в ней за исключением отдельных точек и гладки=х прямых в конечном числе где она может иметь разрыв, то она интегрируема на D.
2 Геометрический и
арифметический ряды
Ряд состоящий из членов бесконечной геометрической прогрессии наз. геометрическим: или
а+ а×q +тАж+a×qn-1
a ¹ 0 первый член q тАУ знаменатель. Сумма ряда:
следовательно конечный предел последовательности частных сумм ряда зависит от величины q
Возможны случаи:
1 |q|<1
т. е. ряд схд-ся и его сумма 2 |q|>1 и предел суммы так же равен бесконечности
т. е. ряд расходится.
3 при q = 1 получается ряд: а+а+тАж+атАж Sn = n×a ряд расходится
4 при q¹1 ряд имеет вид: а-а+а тАж (-1)n-1a Sn=0 при n четном, Sn=a при n нечетном предела частных суммы не существует. ряд расходится.
Рассмотрим ряд из бесконечных членов арифметической прогрессии: u тАУ первый член, d тАУ разность. Сумма ряда
при любых u1 и d одновременно ¹ 0 и ряд всегда расходится.
№3
1 Основные св-ва 2ного интеграла
1. Двойной интеграл по области D = площади этой области.
2. Если область G содержится в Д, а ф-ция ограничена и интегрируема в Д, то она интегрируема и в G.
3. Аддитивное св-во. Если область Д при помощи кривой г разбивают на 2 области Д1 и Д2, не имеющих общих внутренних точек, то:
4. константы выносятся за знак интеграла, а сумму в ф-ции можно представить в виде суммы интегралов:
5. Если ф-ции f и g интегрируемы в Д, то их произведение также интегрируемо в Д. Если g(x,y) ¹ 0 то и f/g интегрируема в Д.
6. Если f(x,y) и g(x,y) интегрируемы в Д и всюду в этой области f(x,y) <= g(x,y), то:
В частности: g(x,y) >=0 то и
7. Оценка абсолютной величины интеграла: если f(x,y) интегрируема в Д, то и |f(x,y)| интегрир. в Д причем
обратное утверждение неверно, итз интегрируемости |f| не следует интегрируемость f.
8. Теорема о среднем значении.
Если ф-ция f(x,y) интегр. в Д., то в этой области найдется такая точка (x, h) Î Д, что:
(2), где S тАУ площадь фигуры Д. Значение f(x, h) опред по ф-ле (2) наз. средним значением ф-ции f по области Д.
2 С-ва сходящихся рядов
Пусть даны два ряда: u1+u2+тАжun =(1) и v1+v2+тАжvn = (2)
Произведением ряда (1) на число l Î R наз ряд: lu1+lu2+тАжlun =(3)
Суммой рядов (1) и (2) наз ряд:
(u1+v1)+(u2+v2)+тАж(un+vn) = (для разности там только - появица)
Т1 Об общем множителе
Если ряд (1) сходится и его сумма = S, то для любого числа l ряд =l × тоже сходится и его сумма SтАЩ = S×l Если ряд (1) расходится и l ¹ 0, то и ряд тоже расходится. Т. е. общий множитель не влияет на расходимости ряда.
Т2 Если ряды (1) и (2) сходятся, а их суммы = соотв S и SтАЩ, то и ряд: тоже сходится и если s его сумма, то s = S+SтАЩ. Т. е. сходящиеся ряды можно почленно складывать и вычитать. Если ряд (1) сходится, а ряд (2) расходится, то их сумма(или разность) тоже расходится. А вот если оба ряда расходятся. то ихняя сумма (или разность)может как расходится (если un=vn) так и сходиться (если un=¹vn)
Для ряда (1) ряд называется n тАУ ным остатком ряда. Если нный остаток ряда сходится, то его сумму будем обозначать: rn =
Т3 Если ряд сходится, то и любой его остаток сходится, если какой либо остаток ряда сходится, то сходится и сам ряд. Причем полная сумма = частичная сумма ряда Sn + rn
Изменение, а также отбрасывание или добавление конечного числа членов не влияет на сходимость (расходимость) ряда.
№4
1 Сведение
2ного интеграла к повторному
Пусть у1(х), у2(х) непрерывны на отрезке [a, b], у1(х)<= у2(х) на всем отрезке.
D={x,y}: a<=x<=b; y1(x)<=y<=y2(x)
Отрезок [a,b] тАУ проекция Д на ось ох. Для такой области людбая прямая, параллельная оу и проходящая через внутреннюю точку области Д пересекает границу области не более чем в 2 точках. Такая область наз. правильной в направлении оси оу.
Если фция f(x,y) задана на Д и при каждом х Î [a,b] непрерывна на у , на отрезке, [y1(x),y2(x)], то фц-ия F(x) = , наз. интегралом, зависящим от параметра I, а интеграл : , наз повторным интегралом от ф-ции f(x,y) на области Д. Итак, повторный интеграл вычисляется путем последовательного вычисления обычных определенных интегралов сначала по одной., а затем по другой переменной.
2 Необходимый
признак сходимости рядов
Если ряд сходится, то предел его общего члена равен нулю:
Док-во:
Sn=u1+u2+тАж+un
Sn-1\u1+u2+тАж+un-1
un=Sn-Sn-1, поэтому:
Сей признак является только необходимым, но не является достаточным., т. е. если предел общегоь члена и равен нулю совершенно необязательно чтобы ряд при этом сходился. Следовательно, вот сие условие при его невыполнении является зато достаточным условием расходимости ряда.
№5
1 Замена переменных в двойном интеграле.
Общий случай криволинейных координат
Пусть существует ф-ция f(x,y) интегр на области Д, можно прямолинейные координаты x, y с помощью формул преобразования перейти к криволинейным: x = x(u,v), y=y(u,v), где эти ф-ции непрерывные вместе с частными производными первого порядка, устанавливают взаимно однозначное и в обе стороны непрерывное соответствие между точками плоской области Д и области ДтАЩ и определитель преобразования, наз. Якобианом не обращается в 0:если это выполняется можно пользоваться ф-лой:
2 Интегральный признак
сходимости ряда. Ряд Дирихле
Т1 Пущай дан рядт (1), члены которого неотрицательны, и не возрастают: u1>=u2>=u3тАж>=un
Если существует ф-ция f(x) неотрицательная, непрерывная и не возрастающая на [1,+¥] такая, что f(n) = Un, " n Î N, то для сходимости ряда (1) необходимо унд достаточно, чтобы сходился несобственный интеграл:, а для расходимости достаточно и необходимо чтобы сей интеграл наоборот расходился (ВАУ!).
Применим сей признак для исследования ряда Дирихле: Вот он: , a Î R Сей ряд называют обобщенным гармоническим рядом, при a >0 общий член оного un=1/na à0 и убывает поэтому можно воспользоваться интегральным признаком, функцией здеся будет ф-ция f(x)=1/xa (x>=1)сия ф-ция удовлетворяет условиям теоремы 1 поэтому сходимость (расходимости) ряда Дирихле равнозначна сходимости расходимости интеграла:
Возможны три случая:
1 a >1,
Интеграл а потому и ряд сходится.
2 0 Интеграл и ряд расходится 3 a=1, Интеграл и ряд расходится № 6 в полярных координатах Переход к полярным координатам частный случай замены переменных. Луч, проходящий из произв точки О имеет на плоскости полярные координаты A(r, j) где r = |ОA| расстояние от О до А полярный радиус. j = угол между векторами ОА и ОР тАУ полярный угол отсчитываемой от полярной оси против часовой стрелки. всегда 0<=r<=+¥, 0<=j <=2p . Зависимость между прямоугольными и полярными координатами: x = r×cosj , y = r×sinj . Якобиан преобразования будет равен: И формула при переходе примет вид: 2 Признаки сравнения Т(Признаки сравнения) Пущай и ряды с неотрицательными членами и для любого n выполняется нер-во: un<=vn (1)тогда 1 Если ряд vn сходится, то сходится и ряд un 2 если ряд un расходится, то расходится и ряд vn. Т. е. говоря простыми русскими словами для простых русских людей (ну для дураков вроде тебя): Из сходимости ряда с большими членами следует сходимость ряда с меньшими, а из расходимости ряда с меньшими членами следует расходимости ряда с большими и не наоборот!!! Причем можно требовать, чтобы неравенство (1) выполнялось не для всех номеров n, а начиная с некоторого n0, т. е. для некоторых номеров меньших n0 неравенство (1) может и не выполняться. При применении сего признака сравнения удобно в качестве ряда сравнения брать ряд Дирихле или геометрический ряд, с которыми и так уже все ясно. Т3 Засекреченная Если сущ вышеописанные неотр. ряды, то если сущ предел: (0 №7 Если Д правильная в направлении оу a<=x<=b, y1(x)<=y<=y2(x), то Если Д огр линиями в полярных координатах, то 2 Признаки Даламбера и Коши Т(Признак Далембера) Пущай для ряда un с положит членами существует предел: , то 1 Если k<1, то ряд сходится 2 Если k>1 ряд расходится Т(Признак Коши) Пусть для того же самого ряда (т. е. положительного) существует предел:, тогда 1 Если k<1, то ряд сходится 2 Если k>1 ряд расходится А вот если эти все пределы по Коши и дедушке Даламберу равны 1, то о сходимости или расходимости ряда ничего сказать низзя. Вот низзя и все тут. Вот. №8 с помощью 2ного интеграла Рассматривая в пространстве тело Р, огр снизу плоскостью оху, сверху z = f(x,y), кот проектируется в Д, сбоку границей области Д, называемое криволинейным цилиндром. Объем этого тела вычисляют по формуле: если f(x,y)<=0 в Д тор тело находится под плоскостью оху. Его объем равен объему цилиндрического тела. огр сверху ф-цией: z = |f(x,y)|>=0. тогда если в Д ф-ция меняет знак, то область разбивается на 2. Область Д1, f(x,y)>=0; Д2, f(x,y)<=0, тогда: 2 Знакочередующиеся ряды. Признак Лейбница. Ряд называется знакочередующимся если каждая пара соседних членов имеет разные знаки (один ♀, другой ♂), если считать каждый член сего ряда положительным то его можно записать в виде: Т (Признак Лейбница) Если для знакочередующегося ряды выполняются условия: 1) u1>=u2>=u3тАж>=un>=un+1тАж 2) то ряд сходится, а его сумма и остаток rn удовлетворяют неравенствам: 0<=S<=un и |rn|<=un+1 Ряд удовлетворяющий условиям теоремы наз. рядом Лейбница. Если условие чередования знаков выполняется не с первого члена, а с какого-нибудь исчо, то при существовании равного 0 предела ряд будет также сходится. №9 площади поверхности с помощью двойного интеграла. Пусть дана кривая поверхность Р, заданная ур-ями z = f(x,y) и имеющая границу Г, проецирующуюся на плоскость оху в область Д. Если в этой области ф-ция f×(x,y) непрерывна и имеет непрерывные частные производные: тогда площадь поверхности Р вычисляется: для ф-ций вида x = m (y,z) или y = j(x,z) там будут тока букыв в частных производных менятца ну и dxdy. 2 Знакопеременные ряды. Абсолютная и условная сходимость рядов. Ряд называют знакопеременным, если его членами являются действительные числа, а знаки его членов могут меняться как кому в голову взбредет. Пусть дан ряд: u1+u2тАж+un=(1), где un тАУ может быть как положительным, так и отрицательным. Рассмотрим ряд состоящий из абсолютных значений этого ряда: |u1|+|u2|тАж+|un|=(2), Если сходится ряд (2), то ряд (1) называют абсолютно сходящимся, а вот если ряд (1) сходится, а ряд (2) расходится. то ряд (1) наз сходящимся условно. Т. Признак абсолютной сходимости: Если знакочередующийся ряд сходится условно. то он и просто так сходится, при этом: <= Доквы: т. к. 0<=|un|+un<=2|un|, то по признаку сравнения сходится ряд |un|+un, тогда сходится ряд: (|un|+un)-|un|=un. Далее, т. к. по св-ву абсолютной величины |Sn|=|u1+u2+тАж+un|<=|un| " n Î N, то переходя к пределу получим: <= Т2 Если ряд (1) абсолютно сходится, то и любой ряд составленный из тех же членов, но в любом другом порядке тоже абсолютно сходится и его сумма равна сумме ряда un тАУ Sn. А вот с условно сходящимися рядами все гораздо запущенней. Т(Римана) Если знакопеременный ряд с действительными членами сходится условно, то каким бы ни было дейст. число S можно так переставить члены ряда, что его сумма станет равна S, т. е. сумма неабсолютно сходящегося ряда зависит от порядка слагаемых №10 1 Вычисление массы, координат центра масс, моментов инерции плоской материальной пластины с помощью 2ного интеграла. Масса плоской пластины вычисляется по ф-ле: , где r(х, у) тАУ поверхностная плотность. Координаты центра масс выч по ф-ле: если пластина однородная, т. е. r(х, у) тАУ const, то ф-лы упрощаются: Статические моменты плоскостей фигуры Д относит осей оу и ох Момент инерции плоской пластины относительно осей ох, оу, начала координат: J0=Jx+Jy если пластина однородная, то ро вышвыривается на фиг и считается равной 1. 2 Сходимость функциональных последовательностей и рядов Функциональной последовательностью заданной на множестве Е, наз. последовательность ф-ций {fn(x)} (1)определенных на Е и принимающих числовые действительные значения. Пусть задана поледовательность числовых ф-ций {un(x)} Формальнг написанную сумму: (2) называют функциональным рядом на множестве Е, а ф-цию un(x) тАУ его членами. Аналогично случаю числовых рядов сумма: Sn(x) = u1(x)+u2(x)+тАж+un(x) называется частичной суммой ряда n порядка, а ряд: un+1? un+2тАж - его n-ным остатком. при каждом фиксированном х = х0 Î Е получим из (1) числовую последовательность {fn(x0)}, а из (2) тАУ числовой ряд, которые могут сходится или расходится. если кто-нибудь из оных сходится, то сходится и функциональная посл (1) в т х0, и сия точка наз. точкой сходимости. Если посл(1) сход на м-ж Е, то ф-ция f, определенная при " x Î E f(x) = назывется пределом посл (1), если ряд(2) сходится на м-ж Е, то ф-ция S(x) определенная при " x Î Е равенством S(x)= называется суммой ряда (2). Остаток ряда сходится только когда на этом же м-ж сходится сам ряд., если обозначить сумму остатка ряда через rn(ч), то S(x) = Sn(x)+rn(x) Если ряд (2) сходится абсолютно, то он наз абсолютно сходящимся на м-ж Е. Множество всех точек сходимости функционального ряда наз областью сходимости. Для определения области сходимости можно использовать признак Даламбера и Коши. С ихнею помашшю ф-ц ряд исследуется на абсолютную сходимость Например, если существует и , то ряд (2) абсолютно сходится при k(x)<1 и расходится при k(x)>1. №11 Пусть на некоторой ограниченной замкнутой области V трехмерного пространства задана ограниченная ф-ция f (x,y,z). Разобьем область V на n произвольных частичных областей, не имеющих общих внутренних точек, с объемами DV1тАж DVn В каждой частичной области возбмем произв. точку М с кооорд Mi(xi,hi,ci) составим сумму: f(xi,hi,ci)×DVi, кот наз интегральной суммой для ф-ции f(x,y,z). Обозначим за l максимальный диаметр частичной области. Если интегральная сумма при l à 0 имеет конечный предел, то сей предел и называется тройным интегралом от ф-ции f(x,y,z) по области V И обозначается: 2 Равномерная сходимость функциональных последовательностей и рядов. Признак Вейерштрасса. Ф-циональную последовательность {fn)x)} x Î E наз. равномерно сходящейся ф-цией f на м-ж Е, если для Î e >0, сущ номер N, такой, что для " т х Î E и " n >N выполняется ¹-во: |fn(x)-f(x)| наз. равномерно сходящимся рядом, если на м-ж Е равномерно сходится последовательность его частичной суммы. , т. ен. равномерная сходимость ряда означает:Sn(x) à f(x) Не всякий сходящийся ряд является равномерно сходящимся, но всякий равномерно сходящийся тАУ есть сходящийся (не, вот это наверное лет 500 выдумывали.) Т. (Признак Вейерштрасса равномерной сходимости ряда) Если числовой ряд: (7), где a >=0 сходится и для " x Î E и " n = 1,2тАж если выполняется нер-во |un(x)|<=an(8), ряд (9) наз абсолютно и равномерно сходящимся на м-ж Е. Док-вы: Абсолютная сходимость в каждой т. х следует из неравенства (8) и сходимости ряда (7). Пусть S(x) тАУ сумма ряда (9), а Sn(x) тАУ его частичная сумма. Зафиксируем произвольное e >0 В силу сходимости ряда (7) сущ. номера N, " n >N и вып. нерво Следовательно: |S(x)-Sn(x)| = Это означает, что Sn(x) à S(x) что означает равномерную сходимость ряда. №12 в тройном интеграле. Если ограниченная замкнутая область пространства V = f(x,y,z) взаимно однозначно отображается на область VтАЩ пространства = (u,v,w) Если непрерывно дифференцируемы функции: x=x(u,v,w), y=y(u,v,w), z=z(u,v,w) и существует якобиан то справедлива формула: При переходе к цилиндрическим координатам, с вязанными с x,y,z формулами: x=rcosj, y=rsinj, z=z (0<=r<=+¥, 0<=j <= 2p, -¥<=z<=+¥) Якобиан преобразования: И поэтому в цилиндрических координатах переход осуществляется так: При переходе к сферическим координатам: r? j q, связанными с z,y,z формулами x=rsinq×cosj, y=r sinqsinj, z=rcosq. (0<=r<=+¥, 0<=j <= 2p, 0<=q <=2p) Якобиан преобразования: Т. е. |J|=r2×sinq. Итак, в сферических координатах сие будет: 2 Свойства равномерно сходящихся рядов Т1 Если ф-ция un(x), где х Î Е непрерывна в т. х0 Î E и ряд (1) равномерно сходится на Е, то его сумма S(x) = также непрерывна в т. х0. Т2 (Об поюленном интегрировании ряда) Пусть сущ. ф-ция un(x) Î R и непрерывная на отр. [a,b] и ряд (3) равномерно сходится на этом отрезке, тогда какова бы ни была т. х0 Î [a, b] (4) тоже равномерно сходится на [a,b]. В частности: при x0 = a, х = b: т. е. ряд (3) можно почленно интегрировать. Т3 (о почленном дифференцировании ряда) Пусть сущ. ф-ция un(x) Î R и непрерывная на отр. [a,b] и ряд её производных (6) равномерно сходящийся на отр [a,b] тогда, если ряд сходится хотя бы в одной точке x0 Î [a,b] то он сходится равномерно на всем отрезке [a,b], его сумма S(x) = является непрерывно дифференцируемой ф-цией и SтАЩ(x)= (9) В силу ф-л ы (8) последнее равенство можно записать: ()тАЩ = So ряд (7) можно почленно дифференцировать №13 1 Приложения тройных интегралов Объем тела Масса тела: , где r(М) = r(x,y,z) - плотность. Моменты инерции тела относительно осей координат: Момент инерции относительно начала координат: Координаты центра масс: m тАУ масса. Интегралы, стоящие в числителях выражают статические моменты тела: Myz, Mxz, Mxy относит коорд плоскостей oyz, oxz, oxy. Если тело однородное: r(М) = const, то из формул она убирается и оне упрощаются как в 2ных интегралах. Степенным рядом наз функциональный ряд вида: a0+a1x+a2x2+тАж + anxn = (1) x Î R членами которого являются степенные ф-ции. Числа an Î R, наз коэффициентами ряда(1). Степенным рядом наз также ряд: a0+a1(x-x0)+a2(x-x0)2тАж + an(x-x0)n = (2) Степенной ряд (1) сходится абсолютно по крайней мере в т. х = 0, а ряд (2) в т х = х0, т .е в этих случаях все лены кроме 1 равны 0. Ряд (2) сводится к ряду (1) по ф-ле у = х-х0. Т Абеля 1Если степенной ряд (1) сходится в т. х0 ¹ 0, то он сходится абсолютно при любом х, для которого |x|<|x0|. 2Если степеннгой ряд (1) расходится в т. х0, то он расходится в любой т. х, для которой |x|>|x0| №14 интегралов 1 и 2 рода Криволинейный интеграл по длине дуги (1 рода) Пусть ф-ция f(x,y) определена и непрерывна в точках дуги АВ гладкой кривой К. Произвольно разобъем дугу на n элементарных дуг точками t0.tn пусть Dlk длина k частной дуги. Возьмем на каждой элементарной дуге произвольную точку N(xk,hk) и умножив сию точку на соотв. длину дуги составим три интегральную суммы: d1 = f(xk,hk)×Dlk d2 = Р(xk,hk)×Dхk d3 = Q(xk,hk)×Dyk, где Dхk = xk-xk-1, Dyk = yk-yk-1 Криволинейным интегралом 1 рода по длине дуги будет называться предел интегральной суммы d1 при условии, что max(Dlk) à 0 Если предел интегральной суммы d2 или d3 при l à 0, то этот предел наз. криволинейным интегралом 2 рода, функции P(x,y) или Q(x,y) по кривой l = AB и обозначается: или сумму: + принято называть общим криволинейным интегралом 2 рода и обозначать символом: в этом случае ф-ции f(x,y), P(x,y), Q(x,y) тАУ называются интегрируемыми вдоль кривой l = AB. Сама кривая l наз контуром или путем интегрирования А тАУ начальной, В тАУ конечной точками интегрирования, dl тАУ дифференциал длины дуги, поэтому криволинейный интеграл 1 рода наз. криволинейным интегралом по дуге кривой, а второго рода тАУ по функции. Из определения криволинейных интегралов следует, что интегралы 1 рода не зависят от того в каком направлении от А и В или от В и А пробегается кривая l. Криволинейный интеграл 1 рода по АВ: , для криволинейных интегралов 2 рода изменение направления пробегания кривой ведет к изменению знака: В случае, когда l тАУ замкнутая кривая т. е. т. В совпадает с т. А, то из двух возможных направлений обхода замкнутого контура l называют положительным то направление, при котором область лежащая внутри контура остается слева по отношению к ??? совершающей обход, т. е. направление движения против часовой стрелки. Противоположное направление обхода наз тАУ отрицательным. Криволинейный интеграл АВ по замкнутому контуру l пробегаемому в положит направлении будем обозначать символом: Для пространственной кривой аналогично вводятся 1 интеграл 1 рода: и три интеграла 2 рода: сумму трех последних интегралов наз. общим криволинейным интегралом 2 рода. 2 Радиус сходимости и интервал сходимости степенного ряда. Рассмотрим степенной ряд: (1) Число (конечное или бесконечное) R>=0 наз радиусом сходимости ряда (1) если для любого х такого, что |x| Т1 Для всякого степенного ряда (1) существует радиус сходимости R 0<=R<=+¥ при этом, если |x| Если вместо х взять у = х-х0, то получится: интервал сходимости: |x-x0 Т2 Если для степенного ряда (1) существует предел (конечный или бесконечный): , то радиус сходимости будет равен этому пределу. Док-вы: Рассмотрим ряд из абсолютных величин и по Даламберу исследуем его на сходимость: (5) 1)Рассмотрим случай, когда конечен и отличен от 0. Обозначив его через R запишем (5) в виде При числовом значении х степенной ряд становится числовым рядом, поэтому по Даламберу ряд (1) сходится если |x|/R<1, т. е. |x| 2)Пусть = ¥ тогда из(5) следует, что для любого х Î R Итак ряд (1) сходится при любом х причем абсолютно. 3) Пусть =0 тогда из (5) следует, что и ряд расходится для любого х. Он сходится только при х = 0 В этом сл-е R = 0. Т3 Если существует предел конечный или бесконечный , то (10) №15 1 условия существования и вычисления криволинейных интегралов. Кривая L наз. гладкой, если ф-ции j(t), y(t) из определяющих её параметрических уравнений: (1) имеет на отрезке [a,b] непрерывные производные: jтАЩ(t), yтАЩ(t).Точки кривой L наз особыми точками, если они соответствуют значению параметра t Î [a,b] для которых (jтАЩ(t))2+(yтАЩ(t))2 = 0 т. е. обе производные обращаются в 0. Те точки для которых сие условие не выполняется наз. обычными (ВАУ!). Если кривая L=AB задана ф-лами (1), является гладкой и нет имеет обычных точек, а ф-ции f(x,y), P(x,y), Q(x,y) непрерывны вдоль этой кривой, то криволинейные интегралы всех видов существуют (можно даже ихние формулы нарисовать для наглядности) и могут быть вычислены по следующим формулам сводящим эти интегралы к обычным: Отседова жа вытекаает штаа: В частности, если кривая АВ задана уравнением y = y(x), a<=x<=b , где у(х) непрерывно дифференцируемая ф-ция, то принимая х за параметр t получим: ну и сумма там тожжа упростица. ну и наоборот тожжа так будит, если х = х(у) Если АВ задана в криволинейных координатах a <= j <= b где ф-ция r(j) непрерывно дифференцируема на отрезке [a, b] то имеет место частный случай, где в качестве параметра выступает полярный угол j. x = r(j)×cos(j), y= r(j)×sin(j). и у второго рода так же. Прямая L наз кусочно-гладкой, если она непрерывна и распадается на конечное число не имеющих общих внутренних точек кусков, каждый из которых представляет собой гладкую кривую. В этом случает криволинейные интегралы по этой кривое определяются как сумма криволинейных интегралов по гладким кривым составляющим сию кусочно-гладкую кривую. все выше сказанное справедливо и для пространственной кривой (с буквой зю). Т1 Если степенной ряд (1) имеет радиус сходимости R>0, то на любом отрезке действительной оси вида |x|<=r, 0 Для ряда отрезком равномерной сходимости будет отрезок |x-x0|<=r или ([x0-r,x0+r]) Т2 На любом отрезке |x-x0|<=r сумма степенного ряда является непрерывной ф-цией. Т3 Радиусы сходимости R, R1, R2 соответственно рядов× (5), (6), (7) равны: R1=R2=R3. Итак ряды (6) и (7) полученные с помощью формального интегрирования и дифференцирования имеют те же радиусы сходимости, что и исходный ряд. Пусть ф-ция f(x) является суммой степенного ряда (9) Т4 Дифференцирование степенного ряда Если ф-ция f(x) на интервале (x0-R, x0+R) является суммой ряда (9), то она дифференцируема на этом интервале и её производная fтАЩ(x) находится дифференцированием ряда (9): fтАЩ(x)= При этом радиус сходимости полученного ряда = R Т5 О интегрировании степенного ряда Степенной ряд (9) можно почленно интегрировать на любом отрезке целиком принадлежащем интервалу сходимости при этом полученный степенной ряд имеет тот же радиус сходимости что и исходный ряд. Последовательное применение Т4 приводит к утверждению, что ф-ция f имеет на интервале сходимости производные всех порядков, которые могут быть найдены из ряда (9) почленным дифференцированием. При интегрировании и дифференцировании степенного ряда внутри интервала сходимости радиус сходимости R не меняется, однако на концах интервала может изменяться. №16 Св-ва криволинейных интегралов 1 рода: 1.Константа выносится за знак интеграла, а интеграл суммы можно представить в виде суммы интегралов: 2. Если дуга АВ состоит из двух дуг Ас и Св не имеющих общих внутренних точек и если для ф-ции f(x,y) сущ криволинейный интеграл по АВ, то для для сей ф-ции сущ криволинейные интегралы по АС и по ВС причем: 3. 4.Ф-ла среднего значения если ф-ция f(x,y) непрерывна вдоль кривой АВ, то на этой кривой найдется точка М, такая, что: , где l тАУ длина кривой Криволинейный интеграл 2 рода обладает всеми свойствами интегралов 1 рода, и исчо при изменении направления прохождения кривой он меняет знак. .И вапще все сказанное выше справедливо и для пространственной кривой (этта та которая с буквой зю) 2 Разложение ф-ций в степенные ряды. Ряды Тейлора и Маклорена. Пусть(1) сходится при |x-x0| Т1 Если ф-ция f распространяется в некоторой окрестности т. х0 f(x)= , то и справедлива формула: (15) Если в некоторой окрестности заданной точки ф-ция распадается в степенной ряд, то это разложение единственно. Пусть дествит. ф-ция f определена в некоторой окрестности т. х0 и имеет в этой точке производные всех порядков, тогда ряд:(6) наз рядом Тейлора ф-ции f в т, х0 При х0=0 ряд Тейлора принимает вид: (6тАЩ) и называется ряд Маклорена. Ряд Тейлора может: 1 Расходится всюду, кроме х=х0 2 Сходится, но не к исходной ф-ции f(x), а к какой-нибудь другой. 3 Сходится к исходной ф-ции f(x) Бесконечная дифференцируемость ф-ции f(x) в какой-то т. х0 является необходимым условием разложимости ф-ции в ряд Тейлора, но не является достаточным. Для введения дополнительных условий треб. ф-ла Тейлора. Т2 Если ф-ция f(x) (n+1) раз дифференцируема на интервале (x0-h, x0+h) h>0, то для всех x Î (x0-h, x0+h) имеет место ф-ла Тейлора: где остаток rn(x) можно записать: (8) (9) Формула (8) наз остаточным членом ф-лы Тейлора в интегральной форме. Ф-ла (9) тАУ формулой Лагранжа. Преобразуя ф-лу Тейлора при х0 = 0 получаем ф-лу Маклорена. Т3 Если ф-ция f(x) имеет в окрестности т х0 производные любого порядка и все они ограниченны одним и тем же числом С, т е " x Î U(x0) |f(n)(x)|<=C, то ряд Тейлора этой ф-ции сходится в ф-ции f(x) для всех х из этой окрестности. №17 Сия очень полезная в сельском хозяйстве формула устанавливает связь между криволинейными и двойными интегралами. Пусть имеется некоторая правильная замкнутая область Д, ограниченная контуром L и пущая ф-ции P(x,y) и Q(x,y) непрерывны вместе со своими частными производными: в данной области. тогда имеет место ф-ла: И вот вся эта фигулина и есть формула Грина. Контур L определяющий область д может быть задан показательными уравнениями х = х1(у), х=х2(у) с<=y<=d x1(y)<=x2(y) или y = y1(x), y=y2(x) a<=x<=b y1(x)<=y2(x). Рассмотрим область Д ограниченную неравенствами: a<=x<=b и y1(x)<=y2(x). и преобразуем двойной интеграл к криволинейным для чего сведем его к повторному и ф-ле Невтона-Лыебница выполним интегрирование по у и получим: каждый из 2 определенны
Вместе с этим смотрят: 10 способов решения квадратных уравнений Cпособы преобразования комплексного чертежа, применение при изображении предметов1 Двойной интеграл
1 Вычисление
площади плоской области
с помощью 2ного интеграла
1 Вычисление объема
1 Вычисление
1 Тройные интегралы
1 Замена переменных
2 Степенные ряды. Теорема Абеля
1 Определение криволинейных
2 Свойства степенных рядов
1 Свойства
криволинейных интегралов
1 Формула Грина