Процессор К1810ВМ89

Общие сведения и технические характеристики специализированного процессора

вводаа-вывода К1810ВМ89

Микросхема К1810ВМ89 представляет собой однокристальный 20-битовый

специализированныйпроцессор ввода тАФ вывода (СПВБ), выполненный по

высоВнкокачественной n-МОП-технологии [4, 5, 15]. Кристалл микросхемы размером

5,5*5,5 мм потребляет мощность не более 2.5Вт от источника питания напряжением

+5 В. Схема выпускается в 40-выводном корпусе. Синхронизуетсяоднофазными

импульсами с частотой повторения 1тАФ5 МГц от внешнего тактового генератора.

Процессор К1810ВМ89 (обозначаемый далее для краткости ВМ89) исВнпользуется

совместно с центральным процессоромВМ86\ВМ88, а также К580ВМ80. Он предназначен

для повышения производительности систем на базе МПК К1810 благодаря освобождению

ЦПот управления вводом тАФ выводом и осуществлению высокоскоростных пересылок с

прямым доступам в память (ПДП пересылок). Косновным функциям СПВБ ВМ89 относятся

инициализация и управление контроллерами внешних устройств, обеспечение гибких

иуниверсальных пересылок с ПДП. Процессор может работать параллельно с ЦП

одновременно по двум каналам ввода тАФ вывода, каждый из которых

обеспечиваетскорость передачи информации до 1,25 Мбайт/с при стандартной

тактовой частоте 5 МГц. Организация связи СПВВ с центральным процессором через

память повышаетгибкость взаимодействия и облегчает создание модульного

программного обеспечения, что повышает надежность разрабатываемых схем.

Процессор ВМ89 имеет два идентичных канала ввода тАФ вывода, каждый из

которыхсодержит 5 20-битовых, 4 16-битовых и один 4-битовый регистр.

Взаимодействие каналов при параллельной работеосуществляется под управлением

встроеннойлогики приоритетов. Процессор обеспечивает 16-битовую шину данных для

связи с ОЗУ и портами В\В. Шина адреса имеет 20 линий, что позволяет

непосредственноадресоваться к памяти емВнкостью до 1 Мбайт. Для экономии числа

выводов БИС младшие 16 адресных линий мультиплексированы во времени с линиями

данных исоставляют единую локальную шину адреса/данных. Четыре старшие адресные

линии аналогично мультиплексированы слиниями состояния СПВБ. Чтобы сигналы этих

линий можно было использовать в МПС, ихобязательно демультиплексируют, либо с

помощью тех же внешних схем, которые используются ЦП (в местной конВнфигурации),

либо с помощью независимых схем (вудаленной конфигурации).

Система команд СПВВ ВМ89 содержит 53 мнемокода, причем возможности и набор

команд оптимизированыспециально для гибкой, эффективной и быстВнрой обработки

данных при вводе тАФ выводе. СПВБ позволяет сопрягать 16- и 8-битовые шины и

периферийныеустройства. При использовании ВМ89 в удаленном режиме пользователь

программно может определить различные функВнции шины СПВБ, легко сопрягая ее со

стандартнойшиной Multibus.

Предельно допустимые условия эксплуатации БИС К1810ВМ89: темпераВнтура окружающей

среды 0..70 В°С, напряжение на любом выводе относительно корпуса-0.3 ..+7В.

Основные хар-ки по постоянному току при- ведены в табл. 1

Назначение выводов БИС К1810ВМ89

Параметр Значение параметра Условия Условия измерения

min мах

Напряжение "0" на входе, В -0,5 +0,8

Напряхение "1" на входе, В 2,0 6,0

Напряжение "0" на выходе, В - 0,45 I=2,0 мА

Напряжение "1" на выходе, В 2,4 I=-0.4 мА

Ток источника питания, мА - 350 Т=25 С

Ток утечки на входах, мкА - В±10 Uвх=5 В

Ток утечки на выходах, мкА - В±10 0,45£U вых³5 В

Напряжение "0" на входе тактовой частоты, В -0,5 +0,6

Напряжение "1" на входе тактовой частоты, В 3,6 6,0

Емкость входа (для всех вы- водов, кроме ADO - AD15, RQ/GT), пф - F=1MГц

Емкость входа/выхода ADO - AD15, RQ/GT. пф - F=1MГц

AD15-AD0 - входы \ выходы для формирования адресов и передачи данных. Функции

этих линий задаютсясигналами состояния до S2, SI, SO. ЛиВннии находятся в

высокоомном состоянии после общего сброса, и тогда, когда шина неиспользуется.

Линии AD15тАФAD8 формируют стабильные (не мультиплексированные) сигналы

припересылках на 8-битовую физическую шину данных и мультиплексируются с данными

при пересылках на 16-битовую физическую шину данных (таб 1).

A19/S6, A18/S5, A17/S4, A16/S3 - выходы для формирования четырех старших

разрядов адресов и сигналов состояний. Сигналыадресов формируютВнся в течение

первой части цикла шины (Т1), в остальной части цикла активны сигналысостояний,

которые кодируются так: S6=S5=1 - означает ПДП-пересылку;S4=0, что означает

ПДП-пересылку; S4=lтАФ циклшины без ПДП; S3=0тАФработает канал 1; S3=lтАФработает

канал2. После такого сброса при отсутствии обращений к шине эти линии находятся

в высокоомном состоянии.

ВНЕ - выходной сигнал разрешения старшего байта шины данных. Сигнал низкого

(активного) уровня формируется процессором,когда байт должен переВндаваться по

старшим линиям D15 тАФ D8. После общего сброса и. при отсутствии обращений к шине

этот выход находится в высокоомномсостоянии. Сигнал ВНЕ (в отличие от

аналогичного сигнала процессоров ВМ86 и ВМ87) может не фиксиВнроваться в

фиксаторе адреса, так как он немультиплексирован с другим сигналом.

S2-S0 - выходы для кодирования стояния ВМ89, определяющие действия процессора в

каждом циклеработы с шиВнной. Они кодируются следующим образом:

S2S1S0=000тАФвыборка команды из адресного пространства вводатАФ вывода; 001-чтение

данных из адресного пространства вводатАФвывода; 010тАФзаВнпись данных в адресное

пространство ввода-вывода; 100-выборка команды из системногопространства

адресов; 101-чтение данных из системного пространства адресов; 101 тАФ чтение

данных из системного пространства адресов; 110-зщапись данных всистемное

пространство адресов; 111 тАФ пассивное состояние. Код 01lтАФне используется. С

помощью этих сигналов контроллершины и арбитр шины формируют команды управления

памятью и устройствами ввода-вывода. Сигналы формируются в такте Т4 предыдущего

цикла, определяяначало нового цикла. По окончании цикла шины в такте Т3 или ТW

сигналы возвращаются в пассивное состояние. Послеобщего сброса и при отсутствии

обращений к шине выВнходы S2, SI, SO находятся в высокоомном состоянии.

READY тАФ входной сигнал готовности, поступающий от адресуемого устройства,

которое оповещает СПВБ о том, что оно готово кпересылке данВнных. Сигнал

синхронизируется в тактовом генераторе К1810ГФ84.

LOCK тАФ выходной сигнал монополизации (блокировки) системной шины. Используется в

многопроцессорных системах и подается наодноименный вход арбитра шины К1810ВБ89,

запрещая доступ к системной шине другим процесВнсорам. Сигнал формируется

установкой соответствующего разрядарегистра управления канала либо командой TSL.

После общего сброса и при отсутствии обращений кшине выход LOCK находится в

высокоомном состоянии.

RESET тАФ входной сигнал общего сброса (начальной установки) остаВннавливает любые

действия СПВБ и переводит его в пассивное состояние дополучения сигнала запроса

готовности канала.

CLK тАФ вход для подачи импульсов синхронизации от генератора тактовых К1810ГФ84.

СА тАФ входной сигнал запроса готовности канала. Используется центральВнным

процессором дляинициализации СПВВ и определения задания каналам. По срезу

сигнала СА опрашивается состояние входа SEL.

SEL тАУ входной сигнал, который по первому (после общего сброса) сигналу СА

определяет статус (ведущий/ведомый) СПВБ и запускаетпоследоваВнтельность

инициализации. При поступлении последующих сигналов СА сигнал SEL определяет

номер канала (1 или 2), которомупредназначено сообщение от ЦП.

DRQ1, DRQ2 тАУ входы запросов прямого доступа к памяти от внешнихустройств.

Сигналы на этих входах сигнализируют СПВВ, что внешнее устройВнство готово к

обмену данными с использованием канала 1 или 2 соответственно.

RQ/GT тАФ входной/выходной сигнал запроса/предоставления шины,по которому

осуществляется диалог, необходимый для арбитража шины между СПВВ и ЦП в местной

конфигурации или между двумя СПВВ в удалённой конфигурации.

SINTR1, SINTR2 тАУ выходные сигналы запросов прерываний от каналов 1 и2

соответственно. Обычно они передаются на вход ЦП через контроллер прерываний

К1810ВН59А. Используются длясигнализации о том, что произошВнли задаваемые

пользователем (программистом) события.

ЕХТ1, ЕХТ2 тАФ входы сигналов внешнего окончания прямого доступа для каналов 1 и 2

соответственно. Они вызывают окончание текущей ПДП- пересылки вканале, который

запрограммирован для анализа окончания ПДП по внешнему сигналу.

Структура СПВБ

Внутренняя структура СПВВ подчинена его основному назначению - выполнять

пересылки данных без непосредственноговмешательства ЦП, котоВнрый связывается с

СПВБ только для инициализации и выдачи задания на обработку. В обоих случаях ЦП

предварительно готовит необходимоесообщение в памяти и затем с помощью сигнала

запроса готовности канала активизиВнрует СПВБ ВМ89 на выполнение действий,

определенных в сообщении. С этого моментаСПВВ работает независимо от ЦП. В

процессе выполнения задания или по его завершении СПВБ может связаться с ЦП с

помощью сигнала запроВнса прерывания.

Процессор может обращаться к памяти и устройствам ввода тАФ вывода (УВВ),

размещенным в системном пространстве адресовемкостью 1 Мбайт или в пространство

ввода тАУ вывода ёмкостью 64 Кбайт (рис 4.2). Хотя СПВВ располагает только одной

физической шиной данных, удобно полагать,что в системное пространство он

обращается по системной шине (СШ) данных,

а в пространстве ввода тАФ вывода по шине вводатАФвывода (ШВВ) данных.

РазлиВнчие между этими двумя шинами состоит в том, что СШ управляет

сигналами чтения и записи в память, а ШВВ тАФ сигнаВнлами чтения

(ввода) и записи (вывода) в УВВ. Таким образом, устройство ввода

тАУвывода, размещенные в системном пространВнстве, оказываются

отображенными на память (реагируют на 20тАУ битовые адреса,

закреплённые за ними по командам чтения и записи в память), а

память, размещенная в пространстве ввода тАФ вывода, тАФ отображённой

на УВВ (адресуемой 16 - битовыми адресами и реагирующий на команды

чтения и записи в УВВ).

Рис. 2 Два пространства адресов процессоров ввода-вывода.

Указанные шины функционируют по -разному, в зависимости от

конфигурации, в которой используется СПВВ. В местной конфигурации

(рис. 3 ) СПВВ использует СШ и ШВВ совместно с центральным

процессором. Арбитраж по предоставлению шины конкретному процессору

осуществляется сигналом запроса/предоставления RQ/GT. В удаленной

конфигурации, простейший вариант которой изображен на рис. 3,б, СПВ

В безраздельно использует ШВВ, она является её локальной шиной.

Доступ к СШ обеспечивается конкретному процессору путем арбитража с

привлечением арбитра шин К1810ВБ89

.

Рис 3. Использование СШ и ШВВ в местной (а) и удалённой (б) конфигурации

Структура процессора ввода тАФ вывода (рис 4) включает несколько функциональных

узлов, соединённых 20-битовой внутренней шиной дляполучеВнния максимальной

скорости внутренних пересылок. (В отличие от 16-битовой внешней шины по

внутренней шине осуществляются пересылки как 16-, так и 20-битовых значений

адресов и данных.)

Общее устройство управления (УУ) координирует работу функциональных узлов

процессора. Все операции (выполнениекоманд, циклы пересылки с ПДП, ответы на

запрос готовности канала и др.), выполняемые СПВВ, распадаются на

последовательностиэлементарных действий, которые называются внутренними

циклами. Цикл шины, например, составляет один внутренний цикл;

выВнполнениекоманды может потребовать нескольких внутренних циклов. Всего

насчитывается 23 различных типа внутренних циклов, каждый из которых занимает от

двух до восьмитактов CLK (без учета возможных состояний ожидания и времени

наарбитраж шин). Общее УУ указывает для каждой операции, какой функциональный

узел будет выполнять очередной внутренний цикл. Например, когда оба

каналаактивны, общее УУ определяет, какой канал имеет более высокий приоритет,

либо, если их приоритеты равны, осуществляет управление попеременной работой

каналов.Кроме того, общее УУ осуществляВнет начальную инициализацию процессора,

для чего используется программно недоступный регистр ССР тАФ указатель блока

параметров.

Рис 4. Укрупненная структурная схема СПВБ ВН69

Арифметическое логическое устройство (АЛУ) может выполнять беззнаковые

арифметические операции над 8- и 16-битовыми двоичнымичислами, вклюВнчающими

сложение, инкремент и декремент. Результатом арифметических операций может быть

20 - битовое число. Логические операции,включая И, ИЛИ, НЕ, могут выполняться

над 8- и 16-битовыми операндами.

Регистры сборки тАФ разборки участвует при передаче всех данных, поступающих

впроцессор. Когда разрядность источника и приемника данных различаются,

процессор использует эти регистры для обеспечения максимальВнной

скоростипередачи. Например, при пересылке с ПДП из 8- битового УВВ в 16-битовую

память процессор затрачивает два цикла шины на прием двух последовательных

байтов,ВлсобираетВ» их в одно 16-битовое слово и передает его в память за один

цикл шины. При передаче 16- битовых данных 8- битовому приемнику осуществляется

егопредварительная ВлразборкаВ» на байты. Таким образом, наличие регистров

сборки/разборки экономит циклы шины.

Очередь команд используется для повышения производительности проВнцессорапри

выборке их из памяти. Во время выполнения программы каналом команды выбираются

из памяти словами, размещёнными по чётному адресу

Рис. 5. Выборка команд с использованием очереди

младшего байта. На одну такую выборку затрачивается один цикл шины. Этот процесс

показан на рис. 5.Если последний байт текущей команды Х приВнходится на чётный

адрес, то следующий байт за ним байт из нечётного адреса (он является первым

байтом команды Y) извлечённого слова в очереди. Когда канал начинаетвыполнять

команду Y, этот байт из очереди извлекаВнется значительно быстрее, чем из памяти.

Таким образом, очередь команд размерностью всего один байт позволяетпроцессору

при выборке команд всегда читать слова, что снижает загрузку шины, увеличивая ее

пропускную споВнсобность и производительность СПВБ.

В двух исключительных случаях при извлечении команд процессор читает из памяти

байты, а не слова. Во-первых,когда команда передачи управления (например, JMP,

JNZ, CALL) указывает на нечётный адрес, по которому размещенакоманда, требующая

исполнения. В этом случае первый байт команды извлекается отдельно. Во-вторых,

когда встречается 6-байтовая команда LPDI, которая извлекается в следующем

порядке: байт тАФслово тАФ байт тАФ байт тАФ байт, и очередь не используется. Когда

используется 8-битовая шина для переВндачи команд процессору, читаются только

байты, аочередь не используется и каждая выборка требует одного цикла шины.

Блок шинного интерфейса (ВШИ) осуществляет управление и определяет циклышины,

связанные с выборкой команд и передачей данных между СПВВ и памятью или УВВ.

Каждое обращение к шине связано с битом регистра этикеток (регистр TAG находится

в каждом канале), который указывает, ккакому пространству адресов (системному

или ввода тАФ вывода) относится обращение. БШИ выставляет тип цикла шины (выборка

команды из пространВнства адресов ввода тАФвывода, запись данных в память

системного пространстВнва и т.д.) в виде кода состояния на выходах S2 тАФ S0

(табл.2). Системный контроллер К1810ВГ88 декодирует этот код, выбирая нужную

шину (СШ/ ШВВ) и формируя соответствующую команду (чтение, запись и т.д.). Затем

БШИопределяет соотношение между логической и физической шириной СШ и LLIBB.

Физическая ширина каждой шины фиксирована в системеи соВнобщается процессору или

его инициализации.

Код состояния S2SISO Тип цикла шины

000 001 010 011 100 101 110 111 Выборка команды из пространства ввода -

вывода Чтение данных из пространства ввода - вывода Запись данных в

пространство ввода - вывода Не используется Выборка команды из системного

пространства Чтение данных из системного пространства Запись данных в

системное пространство Пассивное состояние

Таблица 2.

В системной конфигурации обе шины (СШ и ШВВ) должны иметь одинаковую ширину: 8

или 16 бит, чтоопределяется типом ЦП (ВМ86/ВМ88). В удаВнленной конфигурации СШ

процессора ввода тАФ вывода должна иметь ту же физическую ширину, что и СШ

центрального процессора системы. Ширина ШВВпроцессора ввода тАФ вывода может быть

выбрана независимо. Если в пространстве ввода тАФ вывода используются какие-либо

16-битовые УВВ, должна использоваться16- битовая ШВВ. Если в пространстве ввода

тАФ вывода все УВВ 8-битовые, то может быть выбрана 8- либо 16-битовая ШВВ.

Преимущественно имеет 16- битовая ШВВ,поскольку она позволяет подключать к

системе дополнительные 16-битовые УВВ, а также обеспечивает более эффективную

выборку команд программы, размещенной впространстве ввода тАФ вывода.

Для ПДП-пересылки в программе канала задается логическая ширина СШ и ШВВ

независимо для каждого канала. Логическаяширина 8-битовой физической шины может

быть только 8- битовой, а для 16- битовой физической шины логическая ширинаможет

быть задана 8- либо 16-битовой. Это позволяВнет обслуживать 8- и 16-битовые УВВ с

помощью одной 16-битовой физической шины. В табл. 3перечислены все возможные

отношения между логической и физической шириной СШ и ШВВ в местной и удаленной

конфигурации.

Таблица 3

Конфигурация Ширина СШ Ширина ШВВ

физическая логическая физическая: логическая

Местная 8:8 8: 8

16: (8/16) 16: (6/16)

Удаленная 8:8 8: 8

16: (8/16) 16; (8/16)

8:8 16: (8/16)

16; (8/16) 8: 8

Логическая ширина шины учитывается только при ПДП - пересылках. Извлечение

команд, а также запись и чтение операндов осуществляются словами илибайтами

только в зависимости от физической ширины шины.

Наряду с управлением пересылками команд и данных блок шинного интерВнфейса

осуществляет арбитраж локальных шин. В местнойконфигурации БШИ

использует линию RQ/GT для запроса шины у ЦП и ее возвращения после

исВнпользования, в удаленной конфигурации тАФ длякоординации совместного

исВнпользования локальной ШВВ с другими процессорами ВМ89 или локальным ЦП ВМ86,

если ониимеются. Арбитраж СШ в удаленной конфигурации осущеВнствляется арбитром

К1810ВБ89. В тех случаях, когда необходимо монополизиВнровать СШ, блок

шинногоинтерфейса формирует нулевой активный сигнал LOCK. Это бывает в двух

случаях: 1) когда каналвыполняет команду TSL (Test and Set Lock тАФ проверка с

монополизацией);

2) когда в программе канала есть указание активизировать LOCK на время ПДП-

пересылки.

Структура каналов процессора ввода тАФ вывода. Процессор ВМ 87 (см.

рис. 4) включает два идентичных канала. Каждый канал можетосуществлять ПДП-

пересылку, выполнять программу, отвечать на запросы готовности или простаивать.

Эти действия каналы могут выполнять независимо другот друга, что позволяет

рассматривать СПВВ ВМ89 как два устройства: канал 1 и канал 2. Каждый канал

состоит из двух основных частей: устройства управлениявводом тАФ выводом и группы

регистров, часть которых используетВнся в программах, а часть из них является

программно-недоступными.

Устройство управления вводом тАФ выводом управляет действиями канала во время ПДП-

пересылки.При выполнении синхронной пересылки оно ожидает поступления сигнала

синхронизации на входе DRQ, прежде чем выполнить очередной цикл чтения тАФ

записи.Когда ПДП- пересылка должна заканчиватьВнся по внешнему сигналу,

устройство следит за его появлением на входе EXT. Междуциклами чтения и записи

(пока данные находятся в СПВБ) канал может производить подсчёт числа переданных

данных, перекодировать их и сравнить с заданным кодом.Основываясь на результатах

этих действий, УУ вводом тАФ выводом может прекратить ПДП- пересылку.

В процессе выполнения программы по команде SINTR устройство генериВнрует запрос

прерывания в ЦП. Частозапрос используется для того, чтобы сообщить ЦП о

завершении программы канала.

Регистры канала используются СПВБ как при ПДП- пересылках, так и при выполнении

программы. Все регистры канала (рис. 6), за исключением TAG, непосредственно

принимают участие в указанныхпроцессах. Использование каждого регистра описано в

табл. 4.

Таблица 4

Регистр Использование

в программе при ПДП-пересылке

GA Обоего назначения Указатель источника

или базовый или приемника

GB То же Указатель приемника

или источника

GC >> Указатель таблицы

перекодировки

TP Указатель команд Указатель причины

окончания

РР Базовый Не используется

IX Общего назначения То же

или индексный

ВС Общего назначения Счетчик байтов

МС Общего назначения Участвует в маски-

или маскированного рованном сравнении

сравнения

СС Ограниченного Определяет условия

использования пересылки

Регистр общего назначения GA служит в большинстве команд в качестве операнда.

Вкачестве базового он используется для указания адреса операнда, находящегося в

памяти. Перед началом ПДП- пересылок программа канала загружает в GA

адресисточника или приемника данных.

Регистр общего назначения GB функционально взаимозаменяем с регистВнром GA. Если

GA загружен адресом источника ПДП-пересылки, то GB должен быть загружен адресом

приёмника, и наоборот.

Регистр общего назначения GC используется программой канала как операнд

илибазовый регистр. Используется при выполнении ПДП - пересылок, когда

осуществляется перекодировка данных. В этом случае, перед началом

пересылки,программа канала загружает в GC начальный адрес таблицы

переВнкодировки. В процессе пересылки его содержимое не изменяется.

Указатель команд ТР загружается начальным адресом программы в

проВнцессеинициализации канала общим УУ на выполнение задания. Во время

выполнения программы (задания от ЦП) ТРиграет роль счетчика команд. Так как ВМ89

не содержит указателя стека и не может выполнять стековых операций, возврат

изпрограммы осуществляется путём загрузки в TP адреса возврата, который

запоминается в памяти по команде CALL. Указатель заВндания является

полностьюпрограммно-доступным (в отличие от регистра IP в ВМ86) и может

использоваться программой как регистробщего назначения или базовый.

Однако делать это не рекомендуется, так как программа становится трудной для

понимания.

Указатель блока параметров РР загружается общим УУ начальным адресом

блокапараметров в процессе инициализации канала на выполнение задания. В

подготовленном сообщении расположение блока параметров в памяти определяет

центральныйпроцессор (см. табл. 4). Программа канала не может изменить

содержимое регистра PP. Его удобно использовать как базовый для пересылки

данных в блок параметров. Для ПДП-пересылок регистр РР не используется.

Индексный регистр IX используется программой канала как регистр

общеВнгоназначения. Он может также использоваться в качестве индексного регистра

для адресации операндов, находящихся в памяти. В качестве разновидности

индекснойадресации, с помощью IX можно задать индексную адресацию с

автоинкрементном, которая очень удобна при обработке массивов данных. Для ПДП -

пересылок регистрIX не используется.

Счетчик байтов ВС в программе канала служит регистром общего наВнзначения.При

ПДП- пересылке подсчитывает число пересланных байтов путём декрементирования

значения, загруженного перед ее началом. Если пересылка должна заканчиваться

позаданному числу пересланных байтов, то УУ вводом тАФ выводом закончит её, когда

содержимое ВС станет равным нулю.

Регистр маскированного сравнения МС в программе канала может использоваться

какрегистр общего назначения или для маскированного сравнения. При ПДП-

пересылке используется для маскированного сравнения. МаскироВнванное сравнение

позволяетсравнить выделенные разряды байта (операнда команды или пересылаемого

байта) с заданным заранее значением. Для этого в старший байт МС загружается

маска,выделяющая интересующие разряды, а в младшийтАФсравниваемое значение (рис.

7). В программе, при выполВннении команды условного перехода по

маскированномусравнению (либо при ПДП- пересылке), определенный в ней операнд

(либо пересылаемый байт) сравнивается с замаскированным значением.

Регистр управления каналом СС используется в основном при ПДП- пересылках.

Онслужит для определения условий пересылки и указывает способ её окончания.

Структура и обозначение управляющих полей СС представлены на рис. 8. Пять

старших полей определяют условиеПДП- пересылки:

F (пересылка) определяет, откуда и куда пересылаются данные;

TR (перекодировка) тАФ следует ли пересылаемые данные перекодировать;

SYN (синхронизация) тАФ способ синхронизации пересылки;

S (источник) тАФ в каком регистре (GA или GB) находится адрес источника;

L (монополизация) тАФ следует ли активизировать сигнал во время пересылки.

Четыре младших поля задают способ окончания пересылки:

TS указывает, что пересылка состоит в передаче только одного данного;

ТХтАФчто пересылка должна заканчиваться по внешнему сигналу (ЕХТ);

ТВС тАФ по нулю в счетчике байтов (ВС);

TMC тАФ по результатам маскированного сравнения.

Рис 8. Регистр управления каналом

Поле С не используется для ПДП-пересылок, а служит удобным средством управления

приоритетом программы канала.

Таблица 5

Управляющее поле Код поля Условие ПДП-пересылки

F (функция 00 Из порта ввода в порт вывода

пересылки) 01 Из памяти в порт вывода

10 Из порта ввода в память

11 Из памяти в память

TR (перекодировка) 0 Нет перекодировки

1 Есть перекодировка

SYN (синхронизация) 00 Пересылка асинхронная

01 Синхронизация от источника ка

10 Синхронизация от приемника

11 Зарезервированный код

S (источник) 0 Адрес источника в регистре GA

1 Адрес источника в регистре 0В

L(монополизация) 0 Сигнал LOCK не активен

1 Сигнал LOCK активен

С (приоритет 0 Обычный приоритет программы

программы) 1 Повышенный приоритет программы

TS ( одиночная 0 Пересылка не одиночная

пересылка) 1 Пересылка одного данного

ТХ (окончание по 00 Не внешнее окончание

внешнему сигналу) 01 По сигналу ЕХТ со смещением 0

10 По сигналу ЕХТ со смещением 4

11 По сигналу ЕХТ со смещением 8

ТВС (окончание по 00 Окончание не по нулю в счетчике

нулю в счетчике) 01 Окончание по (ВС)=0 со смещением 0

10 Окончание по (ВС)=0 со смещением 4

11 Окончание по (ВС)=0 со смещением 8

ТМС ( окончание по 000 Не по результатам маскированного

результатам маски- сравнения

рованного сравне- 001 По совпадению со смещением 0

ния) 010 По совпадению со смещением 4

oil По совпадению со смещением 8

100 Не по результатам маскированного

сравнения

101 По несовпадению со ещением 0

110 По несовпадению со смещением 4

III По несовпадению со смещением 8

Кодирование полей ТХ, ТВС и ТМС позволяет выбрать смещение 0, 4 или 8 по

окончанию ПДП-пересылки. Выбранное значениедобавляется к содержимому счетчика

команд ТР и определяет три различных точки программы, в которые

передаетсяуправление после окончания пересылки (рис.9). Окончание по одиночной

пересылке TS == 1 всегда приводит к нулевому смещению.

Рис. 9 Использование смещения Рис. 10 Регистр

байта- по окончании ПДП-пересылки. состояния

программы.

В регистре ТАG каждый бит соответствует одному из 4-х регистров: GA, GB, GC и ТР

(см. рис. 6). Когда они используются в качествебазовых или указателей (см. табл.

5), то бит TAG определяет, к какому пространству адресов (системномуили в\в)

относится адрес, размещенный в соответствующем регистре. Значение бита TAG=0

показывает, что адрес относится к системномупространству (20-битовый адрес);

TAG=1 указывает на пространство в\в (16-битовый адрес); Общее УУ устанавливает

или сбрасываетбит регистра TAG, соответствующий ТР, в зависимости от того, в

каком адресном пространстве размещена программа канала.

Когда GA, GB и GC используются в качестве регистров общего назначеВнния,

соответствующий бит регистра TAG устанавливается по-разному при выполнении

различныхгрупп команд (см. табл. 5).

Восьмибитовый регистр PSW, имеющийся в каждом канале, хранит слово-сочетание

программы В регистре РSW заносится информация о текущем состоянии канала

(рис.10). Логическая ширина шины приемника равна 8 бит при D = 0 и 16 бит при D=

1. Логическая ширина шины источника равна 8 бит устанавливаетсяв единицу. При

управлении выдачей запроса прерывания 1С устаВннавливается в нуль, когда

прерывание запрещено, и в единицу, когда оно разВнрешено. Если каналвыдал запрос

прерывания, то IS=1, если не выдал -IS=0. Бит В=1 задает режим предельной

загрузки шины. БитXF=1, когда канал выполняет ПДП-пересылку. Бит Р задает

приоритет канала. Эта инфорВнмация позволяет в любой момент приостановить

работуканала, записав значение PSW и ТР в память, а затем возобновить его

работу, считав PSW и ТР.

Генератор тактовых импульсов К1810 ГФ84

Генератор тактовых импульсов (ГТИ) КР1810ГФ84 предназначен для управления ЦП КР

1810ВМ86 ипериферийными устройствами, а также для синхронизации сигналов READY с

тактовыми сигналами ЦП и сигналов интерфейсной шиныMultibus. Генератор тактовых

импульсов (рис. 11, 12) включает схемы формирование тактовых импульсов (OSR,

CLK, CLK) , сигнала сброса (RESET) и сигнала готовности (READY);

Cхема формирования тактовых импульсов вырабатывает сигналы: CLK,-тактовой

частоты для управВнления периферийнымиБИС, OSC тАФ тактовой частоты задающего

генератора, необходимые для управления устройствами, входящими в систему, и для

синхронизации. Сигналы синхронны, ихчастоты связаны соотношением: Eefi = 3FCLK=

6Fpclk режиме внутреннего генератора.

Рис 11 Структура ГТИ.

Сигналы могут формироваться из колебаний основной частоты кварцевого резонатора,

подключаемого к входам XI, Х2, илитретьей гармоники кварцевого резонатора,

выделяемой ДС-фильтром или от внешнего генератора, подключаемого ко входу EFI.

Выбор режима функционирования определяется потенциалом на входе F/C. Если этот

вход подключен к ВлземлеВ», то ГТИ работаетв режиме формироВнвания сигналов от

внутреннего генератора (SGN),если на F/C подается высоВнкий потенциал - то

врежиме формирования сигналов от внешнего генератора.

Схема формирования сигнала сброса RESET имеет на входе триггер Шмидта, а на

выходе тАФ триггер, формирующий фронт сигнала RESET по срезу CLK.Обычно ко входу

RES подключается RC-цепь, обеспечивающая автоматиВнческое формированиесигнала при

включении источника питания (рис. 13).

Рис. 13 Схема подключения к ГТИ кварцевого резонатора

Рис.12 Условное графическое обозначение ГТИ.

Схема формирования тактовых импульсов имеет специальный вход синхронизации

(CSYNC), с помощью котороговозможно синхронизировать работу нескольких ГТИ,

входящих в систему. Такая синхронизация осуществляется с помощью двух

D-триггеров по входам СSYNC и EFI (рис. 14).Следует отметить, что если ГТИ

работает в режиме внешнего генератора, то внутренний генератор может работать

независимо (вход OSC независим от CLK и PCLK и асинхронен им).

Рис. 14. Схема формирования сигнала CSYNC.

Схема формирования сигнала готовности (READY). Входной сигнал REAВнDY ЦП

КР1810ВМ86используется для подтверждения готовности к обмену. Высокий уровень

напряжения на входе указывает на наличие данных в ШД. Схема формирования этого

сигнала вГТИ построена так, чтобы упростить включение системы в интерфейсную

шину стандарта Multibus, и имеет две парыидентичных сигналов RDY1, AEN1, и RDY2,

AEN2, объединенных схемой ИЛИ. Сигналы RDY формируются элементами, входящими в

систему, исвидетельВнствуют об их готовности к обмену. Сигналы AEN разрешают

формирование сигнала READY по сигналам RDY,подтверждая адресацию к адресуемому

элементу. Выходной элемент (F) схемы формирует фронт сигнала READY по срезу СLK,

чемосуществляется привязка сигала READY и тактами ЦП. Временная диаграмма

работы ГТИ представлена на рис. 14.

Рис. 14 Временная диаграмма ГТИ

Контроллер накопителя на гибком магнитном диске К580ВГ72

Контроллер накопителя на гибком магнитном диске (КНГМД) КР 580ВГ72 реализует

функциюуправления 4 накопителями на гибких магнитных дисках, обеспечивая работу

в формате с одинарной FM и с двойной MFM плотностью, включая двустороннюю запись

на дискету.Он имеет схему сопряжения с процессором, ориентированную на системную

шину микропроцессоров серий К580, К1810, К1821; обеспечивает многосекторную

имногокаВннальную передачу объемов данных, задаваемых программно как в обычном

режиме, так и в режиме ПДП; имеет встроенный генератор и схему,

упрощающуюпостроение контура фазовой автоподстройки.

Назначение выводов.

RESET тАФ сброс. Выходной сигнал, устанавливающий контроллер в исходВнное

состояние.

RD- чтение. Сигнал RD=0 определяет операцию чтения данных из контроллера.

WR-запись. Сигнал WR=0 определяет операцию записи данных в контроллер.

CS-выбор кристалла. Разрешение обращения к контроллеру. Сигнал CS=0 разрешает

действие сигналов RD и WR.

А0-выходной сигнал, разрешающий обращение либо к регистру состояний (А0=0), либо

к регистру данных (А0=1).

DB7 тАФ DBO тАФ двунаправленная шина данных.

DRQ тАУ запрос на ПДП. Сигнал DRQ=1 определяет запрос на ПДП ЦП.

DACK тАФ подтверждение ПДП. Сигнал от ЦП, сообщающий контроллеру о том, что шины

ЦП находятся в z-состоянии.

ТС тАФ окончание ПДП. Сигнал ТС= 1 сообщает контроллеру об окончании цикловПДП.

IDX тАФ индекс, признак обнаружения начала дорожки.

INT --- сигнал запроса прерывания ЦП от контроллера.

CLK тАФ вход, подключаемый к генератору (4 или 8 МГц).

WR CLK тАФ синхроимпульсы записи. Вход, подключаемый к генератору частотой F=500

КГц при одинарной плотностии F=l МГц при двойной, с длительностью положительного

полупериода 250 нс в обоих случаях. Сигналы должны быть инициированы для режимов

как записи, так и чтения.

DW ---- информационное окно, вырабатывается схемой фазовой автоподстройки и

используется для выбора данных с дисковода.

RD DATA --- линия приема входных данных с дисковода в последовательном коде.

VCO тАФ синхронизация, выходной сигнал контроллера, участвующий в формировании

ВлокнаВ» в схеме фазовой автоподстройки.

WE тАФ разрешение записи, сигнал записи данных на дискету.

MFM --- выбор режима плотности записи. Сигнал MFM=1 определяет двойную

плотность, MFM=0тАФодинарную.

HD SELтАФвыбор головки. Сигнал HD SEL=1 определяет работу с гоВнловкой 1; HD SEL =

0 тАФ работу с головкой 0.

DSI, DSOтАФ выбор устройства, выходные сигналы, обеспечивающие адреВнсацию к одному

изчетырех дисководов.

WR DATA тАФ линия вывода данных в последовательном коде.

PSI, PSOтАФпредкомпенсация, выходные линии, передающие код

предВнварительногосдвига в режиме MFM

FLT/TRKO тАФ отказ/дорожка 0, указывает на сбой при операцияхобмена или

выбора дорожки 0 в режиме поиска.

WP/TS тАФ защита записи/двусторонний, входной сигнал,определяющий режим

записи при операциях обмена или режим поиска информации с двух сторон дискеты.

RDY тАФ сигнал готовности дисковода.

HDL тАФ загрузка головки, выходной сигнал начальной установки головки

дисковода.

FD/STP - сброс отказа/шаг, осуществляет сброс ошибки в режиме обмена и

обеспечивает переходголовки на следующий цилиндр.

LCT/DIR тАУ малый ток / направление, определяет направление движения головки.

RW/SEEK тАУ запись/чтение/поиск, определяет направление движения головки в режиме

поиска,единичный сигнал означает увеличение, нулевой тАФ уменьшение.

Ucc - шина питания.

GND тАФ общий.

Структурная схема контроллера (рис 15,16) включает три функциональных блока:

буфер шины данных, обеспечивающий связьконтроллера с ЦП и вырабатывающий зап

Вместе с этим смотрят:


80386 процессор


Access


Arvutite ja interneti kasutamine eesti elanike hulgas


Intel


Internet