История планетарной воды

В.В. Орленок

Новое в схемах круговорота земной воды. В схемах общего круговорота воды объем испарившейся над океаном влаги обычно считается равным объему воды, поступившей с континентов в форме речного стока, дождевых осадков, таяния ледников, подземного стока. Однако эта схема верна лишь в первом приближении и реализуется при условии постоянства общей массы воды на поверхности Земли и неизменной емкости океанических и морских впадин. На самом деле картина баланса воды на планете оказывается более сложной (Орлёнок, 1985). Дело в том, что планета не является закрытой изолированной системой. Тысячами глубинных разломов, хорошо видимых на космических снимках, и сотнями корней действующих вулканов каменная оболочка планеты связана с глубокими недрами. По ним выносится тепло, газообразные продукты, магма и вода. Сто тысяч ежегодных землетрясений и десятки вулканических извержений свидетельствуют, что Земля тАУ геологически активная живая планета. Поверхность ее и газообразная атмосфера открыты космосу и солнечному излучению. Здесь в высоких слоях атмосферы под действием солнечных частиц высоких энергий происходит разложение молекул воды на составляющие тАУ молекулы водорода и кислорода. Этот процесс называется фотолизом. При фотолизе тяжелая молекула кислорода под действием поля тяготения Земли будет пополнять атмосферу, а более легкая молекула водорода, получив вторую космическую скорость, будет улетучиваться в космос тАУ диссипировать.

Таким образом, рассматривая нашу планету как открытую термодинамическую систему, мы должны учитывать глубинные внутрипланетарные поступления воды и ее потери при фотолизе. При этом нельзя забывать, что вода теряется также на увлажнение морских осадков, биосферы. Но вода поступает к нам из космоса вместе с метеоритами и тектитами, другими космическими пришельцами при их сгорании в атмосфере. Возможно также образование воды в высоких слоях атмосферы путем присоединения солнечных протонов с электронами атмосферы с последующим превращением их в атомы водорода и кислорода и далее в молекулу воды. Однако эта реакция идет значительно выше озонового экрана. Поэтому из-за ультрафиолетового излучения время жизни этой молекулы будет ничтожно тАУ она неизбежно подвергнется фотолизу. Таким образом, в балансе глобального круговорота воды на Земле должны присутствовать, кроме традиционных (испарение, осадки, сток), по меньшей мере, еще две статьи (Орлёнок, 1985):

ПриходРасход
Поступление внутрипланетарной воды, 3,6×1017 г/годПотери воды на фотолиз, 7×1015 г/год

Неучет этих факторов, особенно при переходе на геологический масштаб времени (тысячи и миллионы лет), приводит, как мы увидим, к неверным представлениям о всей направленности эволюции лика Земли. Достаточно сказать, что при традиционно тАЬбезводномтАЭ подходе к проблеме эволюции Земли естествознание тАЬпросмотрелотАЭ важнейший этап ее геологической истории тАУ эпоху океанизации. Не был замечен и рубеж, отделяющий доокеаническую стадию развития Земли от эпохи океанизации. Правда, предпосылки для установления этой неизвестной ранее особенности развития нашей планеты появилось лишь в последнее время. Они связаны с программой глубоководного бурения, начатого в 1969 г. с американского судна тАЬГломар ЧелленджертАЭ. В ходе выполнения этой беспримерной программы были установлены два важнейших, на наш взгляд, факта тАУ отсутствие на дне осадков древнее 165 млн. лет и обнаружение древних мелководных отложений на глубинах 1000 тАУ 6000 м под уровнем моря. Из этого следовало, что океаны тАУ необычайно молодые геологические образования и что они возникли на месте погрузившейся суши или мелководных морских бассейнов, подобных Баренцеву или Балтийскому морям. Но самое главное состоит в том, что данные по мелководным осадкам позволили решить проблему определения упомянутых выше статей водного баланса эндогенных поступлений и фотолитических потерь земной гидросферы (Орлёнок, 1985, 1987).

Классическое уравнение водного баланса М.И. Львовича

Е = Р + R, (III.2)

верное для Мирового океана как закрытой термодинамической системы, с учетом полученных нами новых внешних статей отныне приобретает более полное выражение:

Р + R + Т тАУ Е тАУ F = N, (N>0), (III.3)

где Е тАУ испарение; Р тАУ атмосферные осадки; R тАУ речной; подземный и другие виды стока, контролируемые атмосферными осадками; Т тАУ эндогенные (внутрипланетарные) поступления воды; F тАУ потери на фотолиз.

Уравнение (III.3) показывает, что в реальном мире равновесия (III.2) не существует, так как происходят безвозвратные потери воды при фотолизе и последующей диссипации в космос водорода, а также за счет непрерывного поступления внутрипланетарной воды на поверхность Земли. Малые в годовом исчислении эти статьи баланса, как мы увидим, играют решающую роль в эволюции лика планеты в геологическом масштабе времени.

Современные представления о происхождении воды. Длительное время в естествознании существуют представления о большой древности современного объема земной гидросферы и чрезвычайно медленных ее изменениях в настоящем, прошлом и будущем. Наиболее популярны две точки зрения. Согласно первой тАУ вода на Земле образовалась конденсационным путем из атмосферы сразу после образования планеты, т.е. около 4,5 млрд. лет тому назад. По другой тАУ вода равномерно накапливалась на поверхности в процессе дегазации и вулканизма мантии Земли. Отсюда делается заключение о древности Мирового океана современных размеров и глубин, которые он якобы приобрел еще 600 тАУ 1000 млн. лет назад. Так, академик В.И. Вернадский в 30-х годах писал: тАЬПо видимому, количество соленой морской воды остается более или менее неизменным в течение сотен миллионов леттАЭ (с. 109). В другом месте он уточняет свою мысль: тАЬ..Распределение суши и океана в основном не менялось в течение не менее миллиарда лет, по крайней мере с начала палеозоя, и это распределение не есть поверхностное географическое явление..тАЭ (с. 691). Отсюда следует вывод о древнем и очень устойчивом распределении континентов и океанов, суши и моря, т.е. наблюдаемая асимметрия лика Земли представляется как одна из ее планетарных особенностей. Заметим, что к этому выводу В.И. Вернадский пришел, опираясь на знаменитый синтез австрийского геолога Э. Зюсса в книге тАЬЛик ЗемлитАЭ. Еще более радикальное мнение, основанное на данных изучения изотопного состава воды, высказывает профессор В. Ферронский, полагая, что гидросфера, будучи конденсационного происхождения, образовалась в период остывания верхней оболочки Земли за сравнительно короткий срок в объеме, близком к современному. Во многих работах современных исследователей считается чуть ли не само собой разумеющимся, что Мировой океан с объемом воды, близким к современному, существовал уже в палеозое (Леонтьев, 1982; Хаин, 1971 и др.).

В приведенных и других аналогичных суждениях о природе воды, как правило, отсутствуют надежные количественные оценки изменений объема гидросферы в течение геологической истории Земли, а сами они построены на целом ряде допущений и гипотез.

Представление чуть ли не об изначальном образовании земной гидросферы, по существу, не оставляет места для эволюции. Лик Земли оказывается сформированным со всей своей асимметрией уже изначально. Уязвимы также представления о слабой изменчивости природных условий Земли, медленном и равномерном накоплении гидросферы. Это не согласуется с данными исторической геологии о ярко выраженном эволюционном, поступательном ходе развития природной среды и органического мира Земли, противоречит современным наблюдаемым темпам изменения уровня океана, климата, скорости разрушения горных пород и т.д.

Следует также признать, что у исследователей до недавнего времени не было еще надежного метода решения проблемы эволюции свободной воды. Для этого, прежде всего, нужно было определить эндогенные и фотолитические статьи баланса земной гидросферы. Впервые эти статьи баланса были установлены автором в 1980 г., для чего использовались данные о находках мелководных отложений различного возраста на дне Атлантического, Индийского и Тихого океанов, полученные в ходе выполнения программы глубоководного бурения тАЬГломар ЧелленджертАЭ. В результате противоречия во многом интуитивная и гипотетическая картина эволюции земной гидросферы получила надежное количественное обоснование и оказалась не похожей на ту, что рисовалась исследователями (Орлёнок, 1985).

Прежде всего, уточним для себя немаловажный вопрос. Сколько свободной воды на Земле? Формы состояния воды различны. Это обыкновенная жидкая вода океанов, морей, рек и озер, вода в твердой фазе тАУ это льды Гренландии, Антарктиды и высокогорные ледники, вода в газообразном состоянии тАУ это пары воды атмосферы и, наконец, связная вода, увлажняющая твердые породы и живое вещество.

Вся вода, которая отделилась от твердого вещества земных пород, представляет собой так называемую тАЬсвободнуютАЭ, или гравитационную, воду. Эта свободная вода участвует в круговороте живого и неживого вещества на поверхности Земли. Испаряясь над океанами и другими водными бассейнами, она с осадками, речным, подземным и ледниковым стоком возвращается в Мировой океан. Его площадь составляет 361 млн. км2, средняя глубина тАУ 3800 м, и здесь сосредоточена основная масса свободной воды тАУ 1,42×1024 г, т.е. 94% всей гидросферы. В реках и озерах суши имеется всего 0,0005×1024 г воды, в ледниках значительно больше тАУ 0,035×1024 г и в атмосфере тАУ 0,00013×1024 г. Кроме того, в свободном круговороте участвует и почвенная вода. Масса ее сравнима с ледниковой и равна 0,0085×1024 г. Следует также учитывать воду, увлажняющую верхние 200 тАУ 300 м морских осадков, которая в процессе их уплотнения и диагенеза (преобразования в породу) поднимается к поверхности дна в виде минерализованных растворов. При средней влажности осадков (60%) ее массу можно приблизительно оценить 0,1×1024 г.

Таким образом, общая масса свободной воды, обращающейся в круговороте на поверхности Земли, в настоящее время равна примерно 1,564×1024 г, или, округляя, 1,6×1024 г.

Мы не упомянули другие статьи круговорота, масса участвующей воды в которых много меньше полученного порядка 1024 г.

Ничтожный вклад дает космогенное вещество. По данным Э.В. Соботовича, его ежегодно выпадает на земную поверхность и в океан от 1 до 10 млн. тонн. Следует также учесть, что количество воды, идущей на увлажнение морских осадков, примерно равно количеству воды, вытесняемой из верхней (100 тАУ 200 м) осадочной толщи в ходе ее уплотнения и диагенеза. Так что эта часть баланса является постоянной.

Свидетельства грандиозных опусканий океанского дна. Важнейшим достижением международной программы океанского бурения, начатой в 1968 г. с американского судна тАЬГломар ЧелленджертАЭ, как уже упоминалось, явилось установление двух фактов: первый тАУ на дне океанов не было обнаружено осадков древнее 165 млн. лет, что само по себе явилось неожиданным свидетельством их геологической молодости. В самом деле, если представить летопись Земли в виде книги, на каждой странице которой будет запечатлена история в миллион лет, то такая книга будет насчитывать 4600 страниц. Основное содержание книги тАУ это жизнь Земли без океана, и лишь на последних 165 страницах появляется повествование о нем.

Вторым фактором явилось установление на дне глубоководных котловин всех трех океанов мелководных осадков и пород со следами субаэрального выветривания, т.е. былого нахождения их выше уровня моря. Из материалов 600 изученных нами скважин (более чем 200) были установлены (причем самими участниками программы бурения) неоспоримые свидетельства мелководности или даже наземных условий в областях, которые ныне опущены на глубину от 1 до 6 км и более.

При этом оказалось, что чем древнее мелководные отложения, тем глубже относительно уровня моря они залегают (рис. 14). Отсюда возникает вопрос: какова закономерность в распределении древних и молодых отложений в распространении их на дне современного океана? Анализ показал, что такая закономерность имеется. В Атлантическом и Индийском океанах древнейшие осадки возраста 100 тАУ 160 млн. лет приурочены к континентальным окраинам (рис. 15). По мере приближения к срединно-океаническим хребтам их возраст закономерно уменьшается. В Тихом океане, наоборот, возраст осадков уменьшается от центральных областей океана к его периферии, т.е. к континентальным окраинам. Исключение составляет Восточно-Тихоокеанский хребет, где картина сходна со срединной областью Индийского и Атлантического океанов. Замечательно, что в этих же направлениях изменяется возраст подстилающих осадки вулканических пород. Вывод, который следовал из этих данных, был закономерным: образование Атлантического и Индийского океанов началось с опусканий коры вдоль окраин будущих континентов, которые в последующем захватывали все новые области суши или мелкого моря, распространяясь в направлении к срединной области будущего океана (рис. 16). Области срединно-океанических хребтов здесь оказались вовлечены в опускание лишь в последние 25 тАУ 30 млн. лет. В Тихом океане процесс опускания коры шел от центра океана к периферии. Повсеместно опусканиям предшествовали или сопровождали их мощные вулканические извержения. Это сочетание двух процессов, очевидно, не случайно. Оно проливает свет на причину процесса, который можно назвать процессом океанизации. По мере дегазации и вулканизма в недрах на глубинах порядка 40 тАУ 50 км неизбежно должны возникать разуплотненные зоны. Вот в эти зоны нагруженная базальтовыми лавами кора будет пассивно проседать, занимая освободившееся пространство. В дальнейшем в ходе продолжающегося остывания и уплотнения земного вещества глубинных зон (бывших магматических резервуаров) опускание дна, хотя и с меньшей скоростью и амплитудой, будет продолжаться. Учитывая общую гравитационную организацию вещества, этот механизм в условиях Земли представляется единственно энергетически реальным. Он же в конечном счете обусловливает общую контракцию, сжатие Земли и уменьшение ее радиуса.

Рис. 14. Зависимость возраста мелководных отложений от глубины их залегания на дне Мирового океана (по Орлёнку, 1990) (а) и скорость опускания дна (б): 1 тАУ хребты; 2 тАУ внутриконтинентальные моря; 3 тАУ континентальный склон; 4 тАУ котловины; 5 тАУ поднятия и подводные горы

Какова была скорость этих опусканий и что же происходило с водой?

В поисках ответа на эти и другие возникающие вопросы мы пошли следующим путем. Возраст и современная глубина залегания мелководных отложений по каждой скважине известны. Следовательно, можно определить среднюю скорость V опускания дна в районе каждой из более 200 скважин, вскрывших эти отложения:

V = (H+h)/t. (III.4)

Здесь Н тАУ глубина океана; h тАУ мощность покрывающих мелководные отложения осадков; t тАУ их возраст.

Рис. 15. Мелководные отложения и направление океанизации (по Орлёнку, 1985):

а тАУ карта древних мелководных отложений на дне океанов. Области преимущественного расположения отложений:

1 тАУ неогеновых; 2 тАУ палеогеновых; 3 тАУ позднемеловых; 4 тАУ раннемеловых; 5 тАУ рифты; 6 тАУ разломы;

б тАУ схема, иллюстрирующая направление океанизации (по Орлёнку, 1985): 1 тАУ в Атлантическом и Индийском сегментах; 2 тАУ в Тихоокеанском сегменте

Рис. 16. График, характеризующий скорость опускания океанических сегментов Земли (правая часть) и поступления эндогенной воды в последние 160 млн. лет и в будущем, рассчитанный по данным о современной гипсометрии разновозрастных мелководных отложений тАЬГломар ЧелленджертАЭ (по Орлёнку 1985) по скважинам 1 тАУ Тихого, 2 тАУ Атлантического, 3 тАУ Индийского океанов; 4 тАУ вода, 5 тАУ глубоководные осадки, 6 тАУ мелководные осадки, 7 тАУ базальты. Левая часть графика характеризует скорость поступления воды в будущем, штриховкой показаны доверительные интервалы, вычисленные с вероятностью 0,95%

Расчеты были произведены с учетом уплотнения осадочной толщи после ее образования. Полученные таким образом более 200 значений средней скорости опускания дна различных районов трех океанов мы нанесли на график (рис. 16).

В пределах 95% доверительного интервала все расчетные точки легли, образовав четко выраженную экспоненциальную зависимость (Орлёнок, 1983):

, (III.5)

где a, b, c тАУ коэффициенты, легко определяемые из графика (см. рис. 16).

Если же продолжить линию графика вверх до пересечения с осью скоростей (или допустить t= 0), то она пересечет ось V(t) в районе значения 605 мм/1000 лет, или 0,605 мм/год.

Изучая полученный график, мы прежде всего должны отметить поразительную согласованность данных по различным океанам тАУ Тихому, Атлантическому и Индийскому. Подобная согласованность полуэмпирических параметров не может быть случайной для столь большого массива исходных данных. Впервые количественно найденная закономерность позволила подойти к решению целого ряда фундаментальных проблем. Но прежде, чем мы приступим к их рассмотрению, покажем, что найденная закономерность отражает не только скорость опускания дна океана в послеюрский период геологической истории, но и темпы выноса внутрипланетарной воды на поверхность Земли.

Планета, извергающая воду. Начало резкого подъема кривой опускания дна (см. рис. 16) приходится на интервал времени 50 тАУ 60 млн. лет назад. Этот интервал совпадает с самым ярким рубежом геологической истории Земли, отделяющей мезозойскую эру от кайнозойской. Если бы формирование гигантских впадин происходило без их одновременного заполнения водой, то произошло бы катастрофическое осушение континентов, резкое изменение климата и органической жизни в кайнозойскую эру. Одновременно бурные потоки воды образовали бы глубокие каньоны на континентальных окраинах, а на дне океанических впадин возникли бы гигантские шлейфы галечников, выносимых этими потоками. Однако ничего этого не наблюдается на самом деле, так же как и следов катастрофического осушения материков в последние 60 млн. лет. Но может быть, формирующиеся впадины заполнялись водой, сливающейся с материков? И на этот вопрос мы должны ответить отрицательно, так как подавляющая часть морских осадочных отложений суши не только кайнозоя, но и прошлых эпох является преимущественно мелководной. Это значит, что в пределах современной суши никогда не было глубоководных и обширных океанов, подобных современным. В настоящее время во всех водоемах суши масса воды не превышает 3% от массы воды Мирового океана. Следовательно, вклад материковых вод совместно с водами, находившимися в пределах опускающейся суши и мелководных морей, был весьма незначительным и не превышал нескольких процентов от современной массы воды Мирового океана. К тому же он зафиксирован в ненулевом уровне кривой нашего графика в интервале 165 тАУ 170 млн. лет.

Полученный вывод подтверждается широким распространением мелководных осадков и даже континентальных отложений в последние 165 тАУ 25 млн. лет на месте современных океанов. Таким образом, построенный нами график характеризует не только среднюю скорость опускания различных участков дна в пределах Атлантического, Тихого и Индийского океанов, но отражает также скорость поступления внутрипланетарной воды на поверхность Земли. Отсюда ясно, что опускавшееся дно формировавшегося в кайнозое океана одновременно заполнялось водой, поступавшей из недр Земли. Она поднималась вместе с вулканическими извержениями и по многочисленным глубинным разломам каменной оболочки. Следы этого вулканизма запечатлены в мощном, почти двухкилометровой толщины, плаще базальтовых пород, покрывающих большую часть площади дна современного океана.

Удивительная картина последних 160 млн. лет истории Земли открывается нашему взору при анализе графика (см. рис. 16, с. 65). Оказывается, что даже в этот крайне небольшой отрезок времени вода на поверхность планеты выносилась отнюдь не так равномерно, как это предполагалось учеными. Если до рубежа мезозоя и кайнозоя (60 млн. лет) скорость ее поступления составляла всего 25 тАУ 30 мм/1000 лет, то позднее, в кайнозое, происходит ее быстрое увеличение. В настоящее время планета извергает воду с максимальной за последние 160 млн. лет скоростью, равной 605 мм/1000 лет, или около 0,6 мм в год. Сюда не входит количество воды, идущей на увлажнение непрерывно накапливающихся морских осадков, биосферы, теряющейся в атмосфере и др., т.е. величину 0,6 мм в год следует рассматривать как нижнюю границу возможных темпов выноса на поверхность планетарной воды. Расчеты показывают, что подлинная цифра приближается к 1 мм в год. Много это или мало?

Если подходить к полученному значению скорости дегидратации земных недр с обыденных, житейских позиций, то этот миллиметр мы и не заметим даже при высокоточных измерениях. Однако, если измерять время тысячами лет, счет пойдет уже на метры. А это весьма ощутимо меняет наше представление о консервативности сложившихся условий обитания на Земле. К тому же следует учитывать и другие факторы, приводящие к подъему уровня моря.

Итак, столетние наблюдения на водомерных постах по берегам морей и океанов показали, что уровень океана действительно поднимается со средней скоростью 1,5 мм в год. До сих пор этот подъем объясняли потеплением климата. И действительно, климат за это же время теплел, с 1880 по 1980 гг. температура поднялась в среднем на 0,8В°С. Спутниковыми наблюдениями и непосредственными исследованиями в Антарктиде и Гренландии установлено, что ежегодно происходит сокращение их ледниковых покровов примерно на 250 км3. Это соответствует подъему уровня океана на 0,7 мм в год. Кроме того, воду вытесняют терригенные осадки, выносимые реками в океан, ежегодный объем которых составляет 7 км3, или 0,02 мм по уровню. Еще меньше поднимается уровень за счет ежегодных поступлений 1 км3 вулканического материала. Следовательно, оставшаяся от 1,5 мм часть тАУ 0,78 мм в год тАУ поступает не за счет климатических потеплений. Это глубинная, внутрипланетарная вода, выносимая с продуктами вулканизма и по глубинным разломам. Как видим, полученная независимым путем цифра мало отличается от рассчитанной нами выше величины 0,605 мм в год. Таким образом, в балансе воды необходимо учитывать внутрипланетарную составляющую, равную 0,6 тАУ 1,0 мм в год. Если умножить эту цифру на плотность морской воды и объем впадин Мирового океана, то мы получим массу ежегодных поступлений глубинной воды на поверхность Земли. Она равна 3,6×1017 г.

Таким образом, в объеме ежегодно поступающих в океан вод присутствует постоянная в историческом плане статья, равная 0,6 тАУ 1,0 мм по уровню и 3,6×1017 г по массе, не зависящая ни от каких климатических изменений.

Теперь нетрудно понять тАУ если темпы поступления глубинной воды будут превышать скорость углубления дна океана, т.е. емкость океанических впадин не будет увеличиваться, то избыток воды выплеснется на прилегающую сушу, затопит низменные пространства материков, начнется трансгрессия тАУ наступление моря на сушу. Если же темпы поступления воды будут меньше скорости проседания дна, то растущие впадины океана поглотят избыток воды и начнется регрессия моря, т.е. осушение низменных территорий материков.

Известные нам примеры затопления Голландии, Средиземноморья, других районов свидетельствуют, что мы живем в эпоху трансгрессии, в эпоху быстрого наступления океана на сушу. Об этом говорит и весь ход графика скорости поступления воды за последние 60 млн. лет (см. рис. 16, с. 65).

Ну а сколько воды Земля теряет ежегодно при фотолизе в космическое пространство? Чтобы найти и эту статью баланса, определим из графика среднюю скорость выноса воды на поверхность за последние 160 млн. лет. Она равна 0,1 мм в год, или 3,6×1016 г/год. Следовательно, за период океанообразования, т.е. за последние 60 млн. лет, из недр Земли на поверхность было переброшено 2,2×1024 г воды. Это на 0,6×1024 г больше массы воды в современном океане, равной 1,60×1024 г. Куда же девалась эта огромная масса воды? Полученный избыток характеризует объем потерь на увлажнение морских осадков 0,1×1024 г и биосферы. Оставшаяся часть (0,50×1024 г) была утрачена Землей при фотолизе в верхних слоях атмосферы. Отсюда находим, что средние ежегодные потери в космос составляют примерно 7×1015 г, или около 20% от современных ежегодных поступлений воды на поверхность планеты. Современный баланс земной гидросферы отражен на рис. 17. Так мы нашли еще одну неизвестную ранее статью баланса земной воды тАУ потери в космическое пространство. Теперь мы знаем, сколько наша планета ежегодно получает свободной воды и сколько ее теряется безвозвратно (табл. III.3). А это уже создает предпосылки для разработки научного прогноза грядущих изменений площади суши и моря на поверхности Земли, а с ними особенностей будущего климата и условий жизни.

Таблица III.3

Круговорот воды на поверхности Земли

Статья оборотаМасса, г.Объем, км3
Континент
Осадки1,08×1020108×103
Испарение0,62×102062×103
Поверхностный и подземный стоки0,46×102046×103
Океан
Осадки4,09×1020409×103
Испарение4,55×1020455×103
Воздушный перенос0,46×102046×103
Земля в целом
Эндогенные поступления3,6×101637
Фотолитические потери0,7×10167,2

Рис. 17. Современный баланс земной гидросферы

Но прежде разберемся, какими водными ресурсами располагает наша планета. Несмотря на свой почтенный возраст, она, как мы видим, на исходе своих 4,5 млрд. лет вдруг обнаруживает бурную активность. В самом деле, за всю предыдущую историю, как показывают расчеты (Орлёнок, 1985), было произведено почти столько же воды (4,2×1024 г), сколько за последние 60 млн. лет. А это означает, что земной океан мог возникнуть лишь в кайнозое, т.е. это очень молодое геологическое образование. В прошлом, вследствие малого количества свободной воды и низких (более чем на порядок) темпов ее поступления, могли существовать лишь мелководные моря, более или менее равномерно рассеянные по лику Земли. Если исходить из современных темпов подъема уровня моря, наблюдаемых в последние 100 лет (1,5 мм/год), то за 1000 лет подъем составит 1,5 м. Согласившись со сторонниками равномерного поступления внутрипланетарной воды на поверхность Земли, мы при данной скорости подъема уровня только за последние 50 млн. лет получим совершенно абсурдную цифру прироста толщины вод океана тАУ 75 км. Отсюда следует, что в последнее время темпы заполнения океанских впадин водой были значительно более высокими, чем в прошлом. Причина тому тАУ не общее потепление климата, ибо климат тАУ явление вторичное и зависит от соотношения площади суши и моря. Речь может идти только о возросших темпах поступления воды из земных недр (табл. III.3).

Вода на Земле в далеком прошлом. Теперь мы знаем, что основная масса воды на Земле поступила из ее недр, т.е. имеет тАЬземноетАЭ происхождение. Космос дает ничтожно мало тАУ десятитысячную долю процента. Поэтому в расчетах этим фактором можно пренебречь.

Рассмотрим более подробно вопрос: какими водными ресурсами располагает планета и какой механизм транспортирует воду на поверхность?

То, что океанизация сопровождается активным вулканизмом, наводит на мысль: а не является ли он источником свободной воды на Земле?

Как показал вулканолог Е.К. Мархинин, в продуктах современных вулканических извержений вода действительно присутствует в виде паров, растворов и входит в состав магм. Ее среднее содержание при этом достигает 4 тАУ 5% от массы вулканического материала. На поверхность Земли ежегодно перебрасывается из недр 9 млрд. тонн магмы, пепла, газов и различных паров, т.е. 9×1015 г. По единодушному мнению ученых, напряженность вулканизма в истории Земли была в среднем близка к современной. Поэтому, умножив цифру 9×1015 г на период геологической активности 4,5×109 лет, получаем 4,2×1025 г. Столько вулканического материала было выброшено на поверхность. Если весь его равномерно рассыпать по поверхности Земли, то получится слой толщиной 30 км! Таким образом, можно заключить, что верхняя часть каменной оболочки Земли тАУ ее земная кора тАУ сформирована продуктами вулканизма, а все ее слои некогда побывали на земной поверхности, испытали окисление атмосферным кислородом и преобразование в результате жизнедеятельности организмов.

Зная общую массу вулканического материала, можно определить, сколько воды принесли вулканы на земную поверхность: 5% от 4,2×1025 г составляет 2,1×1024 г. Но в течение всей геологической летописи Земли вода непрерывно (со скоростью около 2,0×1015 г в год) терялась при фотолизе. Ее общие потери составили около 2,58×1024 г.

Масса современной гидросферы равна 1,6×1024 г, значит, всего было выработано планетой (1,6 + 2,5)×1024 г = 4,1×1024 г воды. Следовательно, недостающая часть воды (2,0×1024 г) поступила на земную поверхность невулканическим путем. Вода может транспортироваться также по глубинным разломам, сбрасываться магмой на глубине при падении давления. Иными словами, вулканизм дал лишь половину наземной воды. Другая половина поступила невулканическим путем.

Но далеко не вся масса воды вышла на поверхность. Значительная ее часть осталась захороненной в недрах Земли, пошла на увлажнение морских осадков. Сколько же из всей этой массы глубинной воды достигло поверхности?

Для ответа на этот вопрос нам придется еще раз заглянуть в глубокие недра Земли.

В центре планеты, как мы видели, находится металлическое ядро, выше (до глубин 2900 км) тАУ обширная зона жидкого расплава, так называемое внешнее ядро, которое облекается твердой мантией тАУ оболочкой (см. рис. 8, с. 28). В этой мантии и сосредоточено первичное планетное вещество, из которого была сформирована наша Земля. Считается, что преобразование этого протовещества происходит в результате физико-химических реакций в зоне внешнего ядра. Продукты этого преобразования тАУ тяжелые металлы тАУ опускаются вниз и формируют плотное внутреннее ядро, а легкие газы и силикаты поднимаются в верхние горизонты планеты. Оценивая массу ядра, земной коры и внешнего ядра, можно примерно найти, сколько протовещества уже подверглось переработке в течение всей истории Земли. Эта величина составляет 361×1025 г. Непрошедшее через горнило физико-химических реакций вещество (240×1025 г) сосредоточено в мантии Земли. Считается, что состав протовещества близок составу выпадающих на Землю метеоритов. Но метеориты содержат в среднем около 0,5% воды. Это позволит оценить, сколько воды было выработано при распаде 361×1025 г протовещества; получается 1,8×1025 г. Из этой огромной массы лишь 4,2×1024 г поступило на поверхность в жидкой фазе, что составляет 23%. Значит, 77% воды навсегда осталось в недрах верхних этажей планеты. Непрошедшая через горнило физико-химических реакций часть протовещества оболочки (240×1025 г) способна дать еще 1,2×1025 г воды и, следовательно, 2,76×1024 г в свободной фазе. Иными словами, земные недра еще должны выработать полтора объема современного Мирового океана!

Приведенные расчеты позволяют сделать ряд важных выводов относительно прошлой истории свободной воды и будущей эволюции Мирового океана.

За всю жизнь Земля уже выработала 2/3 воды, содержавшейся в протопланетном веществе. В будущем она еще выработает примерно полтора объема Мирового океана, после чего поступление воды на земную поверхность прекратится.

Из 4,2×1024 г вынесенной на поверхность воды за период океанизации, т.е. за последние 70 млн. лет, была выработана почти половина тАУ 2,2×1024 г. Оставшаяся часть поступила на поверхность в течение всей предыдущей истории Земли, т.е. за 4 млрд. лет. Естественно, этой воды было недостаточно, чтобы сформировать Мировой океан, подобный современному. Ее было слишком мало. Этой массы воды должно было хватить лишь на образование небольших мелководных водоемов. Поскольку пышная наземная растительность появилась лишь в середине палеозоя тАУ в каменноугольном периоде, то мы должны признать, что только к этому времени мелководные водоемы более или менее равномерно покрыли земную поверхность.

До карбона воды еще было мало, поэтому жизнь не могла выйти на бесплодную неувлажненную сушу, продолжая развиваться в немногочисленных морских бассейнах докарбонового времени. С появлением обширного зеркала водоемов ускорился фотолиз, и, следовательно, стал быстро накапливаться в атмосфере кислород. В производство кислорода включилась также растущая масса биосферы. Атмосфера Земли становится все более кислородной, что способствовало развитию высших форм органической жизни.

Таким образом, вся история Земли может быть разделена на два периода тАУ доокеанический, включающий криптозой и большую часть фанерозоя, и период океанизации, начавшийся в конце мезозоя (70 млн. лет) и продолжающийся с наивысшей скоростью в настоящее время. Причина такого разделения определяется постепенным характером накопления выделяющейся из недр свободной воды на земной поверхности. Иными словами, эволюция лика Земли и жизни шла с постепенным ускорением.

Из приведенного следует также, что Мировой океан тАУ чрезвычайно молодое образование. Никогда на Земле не было раньше подобного глубоководного и обширного резервуара свободной воды. Поэтому тщетно искать следы древних океанов на современной суше тАУ их там никогда не было. Океан не дается планете изначально. Он появляется в результате длительной и долгой эволюции протовещества, в результате постепенного накопления выносимой из недр планеты свободной воды.

Возникает вопрос: как долго Земля еще будет производить воду и сколько лет будет существовать океан?

Реальная фантастика голубой планеты. Средняя скорость поступления воды в период океанизации составляет 3,6×1016 г в год, т.е. на порядок ниже современной (3,6×1017 г в год). При сохранении средних темпов дегидратации, установившихся в кайнозое, в последующее время для выработки оставшейся массы свободной воды в недрах планеты (2,76×1024 г) потребуется 2,76×1024 г/3,6×1016 г/год = 8×107 лет. Следовательно, Земля еще 80 млн. лет будет вырабатывать воду, после чего ресурсы ее протовещества исчерпаются и поступление воды на поверхность полностью прекратится. Если мы нанесем эту цифру на левую часть графика (см. рис. 16, с. 65) и предположим, что последующие поступления воды, вследствие ее уменьшения в оболочке, будут происходить все замедляясь, т.е. аналогично закону возрастания в период океанизации, то получим симметричный график (см. рис. 16, с. 65). Значит, максимума дегидратации следует ожидать в ближайший миллион лет, после чего скорость поступления воды начнет уменьшаться. Отсюда находим, что продолжительность периода океанизации составляет всего 120 тАУ 140 млн. лет. Следовательно, океанизация тАУ это финал эволюции планеты. Развитая гидросфера возникла на Земле на заключительном этапе ее внутренней активности.

Как же будет изменяться лик Земли в процессе финального этапа океанизации?

Современные темпы поступления эндогенной воды составляют 0,6 мм в год. Они, как мы видели, установились многие миллионы лет назад. Поэтому у нас нет никаких оснований считать, что, скажем, в ближайшие тысячи и даже сотни тысяч лет (что в геологическом масштабе времени тАУ всего лишь миг) эти темпы могут резко измениться. Значит, через 10 тысяч лет уровень океана при отсутствии крупных изменений его емкости за счет значительных углублений дна поднимется на 6,1 м. Но такое увеличение уровня неизбежно повлечет за собой общее потепление климата, что может привести к полному или значительному таянию льдов Антарктиды и Арктики. Ликвидация этих ледников повысит уровень моря еще на 63 м, т.е. в сумме с глубинной водой уровень поднимется на 70 м. Это приведет к затоплению всей низменной суши, треть которой лежит на отметке ниже 100 м. Человечество, видимо, будет бессильно сдержать это наступление океана, ибо нельзя построить вдоль всего океанского и морского побережья дамбы высотой около 80 м. Через 100 тысяч лет уровень моря поднимется еще на 60 м и достигнет отметки +240 м. П

Вместе с этим смотрят:


"Нивхи"


32-я Стрелковая дивизия (результаты поисковой работы группы "Память" МИВлГУ)


4 capitals of Great Britain


About Canada


Description of Canada