Анализ гидроакустических сетей
Исходные данные к проекту:
Тип сети тАУ гидроакустическая широкополосная цифровая сеть интегрального обслуживания.
Количество узлов коммутации тАУ несколько десятков.
Скорость передачи информации в гидроакустической сети - ?
Структура сети тАУ не иерархическа.
Метод формирования таблиц маршрутизации тАУ вероятностный, диффузный.
Метод формирования плана распределения информации тАУ логически-игровой.
Виды служб тАУ интерактивные.
Соединение тАУ точка-точка.
Перечень графического материала:
Классификация методов маршрутизации.
Описание логически-игрового метода
Структураня схема маршрутизатора с использованием логически-игрового метода формирования плана распределения информации.
Данный дипломный проект посвящен разработке структурной схемы маршрутизатора, использующего логически-игровой метод фоормирования плана расрпеделения информации на гидроакустической широкополосной цифровой сети интегрального обслуживания.
В разработке представлены общие сведения о гидроакустических сетях: топология сети, методы множественного доступа, маршрутизация в гидроакустических сетях и так далее.
Представлены общие принципы технологии АТМ. Описана общая структура маршрутизации и общая классификация методов маршрутизации, где описываются методы формирования плана распределения информации и выбор исходящей линии связи.
Предлагается алгоритм работы маршрутизатора и его структурная схема.
Представлено технико-экономическое обоснование проекта, и рассмотрены вопросы охраны труда и безопасности жизнедеятельности.
Введение. 5
1 Определения. 7
1.1 Классификация существующих гидролокационных устройств. 7
1.2 Шумы в гидроакустике. 10
1.3 Воздействие природных явлений в гидроакустике. 12
2 Подводные акустические сети. 15
2.1 Гидроакустическая связь. 17
2.3 Сетевая топология. 18
2.4 Методы множественного доступа. 19
2.5 Алгоритмы маршрутизации. 20
2.6 Протоколы управления доступом. 21
2.7 Методы запроса авто-повторений. 23
2.8 Пример разработки: сеть SeaWeb. 24
2.9 Цели эксперимента и подход. 24
2.10 Инициализация и маршрутизация. 26
2.11 Протокол доступа. 27
3 Принципы технологии АТМ. 28
4 Быстрая коммутация пакетов. 35
5 Маршрутизация. Основные определения. 39
5.1 Общая классификация методов маршрутизации. 39
5.2 Формирование плана распределения информации. 43
5.3 Выбор исходящей линии связи. 52
6 Структурная схема маршрутизатора с использованием логически-игрового метода формирования плана распределения информации. 54
6.1 Алгоритм работы маршрутизатора. 54
7 Безопасность жизнедеятельности. 59
7.1 Общий обзор вредных факторов. 59
7.2 Требования к монитору. 61
7.3 Правильная организация рабочего места. 62
7.4 Рабочая среда. 64
8 Расчет экономических показателей схемы маршрутизатора. 71
8.1 Расчет себестоимости и цены схемы маршрутизатора. 71
8.2 Оценка эффекта использования схемы маршрутизатора в ГА сетях связи 75
Приложение А. 78
Приложение Б. 79
Список используемой литературы. 81
Явление гидроакустики (ГА) уже достаточно давно широко используется в различных областях жизнедеятельности человека. С помощью гидроакустики производится поиск движущихся подводных объектов, осуществляется управление движением судов, прогнозирование стихийных бедствий, извержений вулкана, цунами и многое другое.
Но, несмотря на востребованность данного явления, использовать его в большем масштабе было невозможно по многим причинам. Скорость распространения звуковой волны очень низка: например, скорость распространения звуковой волны в породах земной мантии 8 километров в секунду, в коре Земли тАУ 3-4 километра в секунду, а в слоях осадочных пород, выстилающих дно океана всего 2 километра в секунду, то есть гораздо ниже скорости распространения звука в радиоканале [3]. Ранее использовался некогерентный прием ДЧМ, так как эти системы более эффективны для гидроакустики, но они делали невозможным достижение более высокой скорости передачи данных.
Развитие техники и технологии привело к появлению систем передачи данных узконаправленного действия с высокой скоростью передачи на дальние расстояния.
Стало возможным не только передавать информацию на дальние расстояния, но и разворачивать целые сети для передачи информации под водой с обеспечением связи с внешними сетями.
При использовании данных сетей связи, как и любых других, необходимо cоблюдение нескольких условий:
передача информации между узлами должна осуществляться без потерь;
необходимо обеспечить минимальную задержку при передаче данных;
оптимальное использование ресурсов сети.
Для гидроакустической сети связи очень важным параметром является также потребление энергии, так как иногда уменьшение энергетических затрат достигается путем более длительной передачи информации.
Одной из проблем, возникающих при передаче информации в гидроакустических сетях, является проблема маршрутизации.
Маршрутизация позволяет определить оптимальный по заданным параметрам маршрут (например, количество транзитных узлов коммутации (УК), время задержки в элементах сети связи при передаче информации между пользователями, надежность элементов сети и так далее) на сети связи между абонентскими пунктами (АП) пользователей либо узлами коммутации.[9].
Целью данного дипломного проектирования является разработка структурной схемы для гидроакустической сети связи с использованием наиболее подходящего из нижеописанных метода формирования плана распределения информации (ПРИ) и исходящей линии связи (ЛС).
1.1 Классификация существующих гидролокационных устройств
Гидролокация тАУ это обнаружение, определение местоположения и установление физической природы объектов в море с использованием отражения, переизлучения или собственного отражения акустических волн, распространяющихся в водной среде [7]. Акустическая волна в данном случае тАУ это полезный сигнал, с помощью которого передаются данные в гидроакустическом канале. Скорость передачи акустической волны на пять порядков ниже, чем скорость распространения радиоволн. При условии хорошего распространения звуковой волны дальность связи обеспечивается до 10 километров и более. Существуют приборы тАУ лучеграфы, которые по значениям скорости звука на нескольких глубинах автоматически вычерчивают траекторию звуковых лучей, направленных под различными углами к горизонту.
Важным фактором распространения звуковой волны является гидростатическое давление тАУ глубина, на которой распространяется звук. Звуковой канал залегает в океане на глубине нескольких сотен метров. Возможны приповерхностные и поверхностные каналы, а также каналы в осадочных породах, застилающих дно [3]. Существуют пассивные слои-фантомы морского дна тАУ скопление морских организмов, обуславливающих появление звукорассеивающих полей.
Гидролокационным наблюдением называется обнаружение объектов, определение их местоположения и измерение параметров движения гидроакустическими методами. Устройства, выполняющие эти функции тАУ гидролокационные системы (ГЛС).
В зависимости от того, как отражается гидроакустический полезный сигнал, различают следующие виды гидролокационного наблюдения.
Гидролокационные системы наблюдения, основанные на отражении от объектов звуковых сигналов, излучаемых генератором гидролокационной системы. Отраженный гидроакустический сигнал несет информацию о координатах, параметрах движения объекта и о его физических особенностях. Такие гидролокационные системы называются активными. Они позволяют обнаруживать объекты, не являющиеся источниками активных излучений.
Гидролокационные системы наблюдения, основанные на приеме сигналов собственного акустического излучения объектов. Это пассивные гидролокационные системы. К полезным сигналам пассивных систем можно отнести шумы механизмов и машин, гидродинамические шумы, излучения генераторов гидролокационных систем.
Гидролокационные системы наблюдения, основанные на ретрансляции тАУ переизлучении сигналов генераторов активных гидролокационных систем специальными ретрансляторами, что широко используется в навигации [7].
Схема гидролокатора такова: мощный электрический генератор создает звуковые или ультразвуковые импульсы-посылки. После излучения импульса излучатель переключается на режим приема колебаний и с этого момента начинает принимать эхо, отраженное любыми подводными препятствиями. Звуковая мощность гидролокатора очень велика.
Шумопеленгатор (пассивный гидролокатор) для надводного корабля тАУ это подводные тАЬушитАЭ, а для подводной лодки и тАЬглазатАЭ, так как на больших глубинах гидроакустическое ухо слышит дальше, чем видит телевизионный подводный глаз.
В качестве приемников шумопеленгаторов применяют пъезоэлектрические или магнитострикционные преобразователи. В первом случае под воздействием звукового давления получаются электрические заряды, которые подаются на вход усилителя, а он в свою очередь увеличивает электрическое напряжение до необходимого значения. А в магнитострикционном приемнике происходит преобразование звуковой энергии в энергию электро-магнитного поля.
Эхолот от гидролокатора отличается направлением звукового луча, отсутствием устройств, указывающих пеленг на отражающий объект. Для больших глубин рабочая частота уменьшается, чтобы затухание звука не ослабилось до уровня помех. Эхолот используется в качестве поводыря на судне указывающего когда можно двигаться полным ходом, когда следует замедлить ход или остановиться.
С помощью ГЛС производится обнаружение рыбных косяков, ведется картографирование морского дна и поиск полезных ископаемых в прибрежных районах морей, решаются задачи навигации и гидроакустической океанографии, проводится сейсмографическое прогнозирование, подводное управление транспортными средствами. Например, управление движением судов производится при помощи цепочки звукопроводящих маяков, располагающихся на якорях на дне моря по средней линии обслуживаемой трассы движения судов.
В рыболовном промысле рыболокаторы могут определить местонахождение рыбных скоплений в горизонтальном, вертикальном или обоих направлениях.
В основу ГЛС положено постоянство скоростей распространения звуковых волн в воде и прямолинейность их распространения в однородной среде, что позволяет определять расстояние до объекта прямым или косвенным измерением времени прохождения волн от ГЛС до объекта и обратно.
Существует множество типов подводных звукоприемников тАУ волоконно-оптические, конденсаторные (с применением некоторых диэлектриков тАУ меняющих свои свойства под воздействием колебаний) и другие.
Чтобы получить более сильные сигналы используют не один приемник, а группы подводных приемников.
Данные от гидролокационного устройства поступают на донные станции, датчики гидроакустической сети связи. Сеть состоит из большого числа датчиков, которые могут быть неподвижными, или медленно передвигающихся. Суммарная информация гидроакустической сети состоит из океанических параметров: например солености воды, температуры, подводных потоков. На поверхности располагаются станции, которые служат как шлюзы, обеспечивающие радиосвязь с береговыми станциями. Пользователями таких сетей могут быть метеорологические станции, военные центры, добывающая и промысловая промышленность и другие. Осуществляется и обратная задача, например субмарина может обратиться к внешним системам и осуществить передачу сигнала подводной сети.
Подводные лодки получают современное гидроакустическое оборудование обнаружения и связи, приборы для обнаружения работы гидролокационных станций противника, приборы для прогнозирования погоды.
Также для военной и добывающей промышленности используется гидроакустический канал для приведения в действие различных подрывных устройств.
Особенностью таких сетей является низкая пропускная способность и высокое время ожидания из-за медленного распространения звука и высокого уровня шумов [12].
1.2 Шумы в гидроакустике
В качестве обязательного параметра любой гидролокационной системы вводится минимальное (пороговое) отношение сигнал/помеха, при котором обеспечиваются заданные количественные характеристики эффективности этой системы. Мешающие гидролокационному наблюдению сигналы обусловлены тепловыми шумами, кавитационными шумами, шумами моря, шумами судоходства, реверберационными шумами [3].
Тепловые шумы вызываются движением молекул воды. Получить информацию о начальном положении и скорости каждой молекулы невозможно, к тому же очень сложная система уравнений, описывающих движение молекул. Поэтому законы по описанию тепловых шумов рассматриваются как случайные пространственные процессы. Уровень тепловых шумов мал по сравнению с шумами другого происхождения и определяют минимальный уровень шумов моря.
Кавитационные шумы появляются при возникновении в воде областей пространства, в котором давление отлично от статического. Внутри крошечных полостей, возникающих в воде при кавитации, образуется разрежение. Внезапное уменьшение давления в этих полостях настолько велико, что в них немедленно проникает воздух, растворенный в воде, и водяной пар. В результате образуется воздушный пузырек, который через некоторое время захлопывается, это сопровождается выделением акустической энергии. Кавитационные шумы описываются методами математической статистики. Возникающие при движении судов или гидрофонов в воде, они характеризуются очень большой интенсивностью.
Шумы моря возникают при движении масс воды вследствие деятельности человека и при движении морских организмов в воде. Источники шума моря не поддаются детерминированному описанию. Интенсивность шумов моря меняется в зависимости от места, времени и гидрологических условий. Она сильно возрастает в мелководных, прибрежных районах и при волнениях, сопровождается обрушением волн.
Шумы судоходства тАУ это возмущения, создаваемые при движении судов вообще. Интенсивность этих шумов мало меняется при изменении точки наблюдения, а статические характеристики сходны с характеристиками шумов моря.
Реверберационные шумы возникают при отражении части энергии излучаемого (зондирующего) сигнала активной гидролокационной системы от поверхности моря, морского дна, биологических объектов в воде, от неоднородностей морской среды. Характеристики отражений взволнованной пространственно-временной границы раздела вода-воздух, шероховатой, в общем случае, пространственной границы вода-дно моря и биологических объектов в воде заранее неизвестны и меняются случайно. Поэтому реверберационные шумы описываются методами математической статистики.
1.3 Воздействие природных явлений в гидроакустике
Реверберация тАУ это отражение звука от всех природных рассеивателей, создающих помеху гидролокации. Эхо от лоцируемого предмета может разбиваться на большое количество сигналов, а реверберация выделяется среди ложных эхо-сигналов. По теории В.В. Ольшевского реверберационная помеха маскирует полезный эхо-сигнал и затрудняет обнаружение подводных объектов. Для борьбы с ней концентрируют посылаемый и принимаемый сигналы в очень узком пучке, применяют фильтры, используют модуляцию сигнала.
Существует явление предреверберации, которая появляется перед сигналом на большом расстоянии от источника, когда основная реверберация уже затухла. Предреверберация обусловлена отражениями, приходящими раньше основного сигнала, путь которого может быть извилистым.
Но реверберацию можно использовать для определения направления и скорости движения лоцируемых подводных объектов, используя эффект Доплера, заключающегося в изменении частоты принимаемого сигнала в зависимости от скорости взаимного движения источника и приемника колебаний. При сближении приемника и источника колебания быстрее приходят к приемнику, это равноценно увеличению частоты колебаний источника, то есть высоты тона, соответственно, при удалении приемника от источника эффект тот же, что и при снижении частоты колебаний источника.
Эффект Доплера используется и в полезных целях. Например, действие гидроакустического лага основано на эффекте, который в данном случае проявляется в том, что при движении судна частота отраженного от дна звукового сигнала будет отличаться от частоты посылки (для луча, наклоненного вперед по ходу судна тАУ в сторону увеличения, для луча, наклоненного в сторону кормы тАУ в сторону уменьшения). Доплеровский сдвиг частоты может достигать достаточно больших значений: при частоте посылки 200 килогерц сдвиг частоты тАУ 200 герц на каждый узел судна. Два наклоненных акустических луча позволяют определить и контролировать снос судна боковыми течениями.
Направление движения объекта определяют, сравнивая частоты посылаемых сигналов и принимаемого отраженного эха, для чего в тракт гидролокатора вводят доплеровские фильтры.
Если объект локации удаляется от лоцирующего корабля, тон эха понижается, тем сильнее, чем больше скорость объекта.
Неравномерный прогрев воды вызывает рефракцию звуковых лучей (искривление). Звуковые лучи стремятся в сторону холодных слоев, чаще находятся у поверхности моря ночью и в глубине днем. То же происходит и в зависимости от времени года тАУ зимой лучи стремятся в приповерхностную зону, а летом в глубинные слои.
Рефракция значительно затрудняет обнаружение подводных объектов, навигацию и связь. Образуется тАЬмертвые зонытАЭ или тАЬзоны тенитАЭ, в которые не попадают приемные звуковые сигналы [3].
Внутренние волны могут порождать весьма интересные гидроакустические явления, вариации и флуктуации сигналов во времени. Например при передаче акустических сигналов может возникать явление многолучевости распространения (реверберация), что может приводить к значительным искажениям исходного сообщения. С такими явлениями как многолучевость и Доплеровский эффект приходится бороться с помощью специальных методов обработки сигнала, например используется когерентный метод приема в подводной связи.
Подводные акустические сети состоят из автономных донных станций и поверхностных, которые служат как шлюзы и обеспечивают радиосвязь с береговыми станциями. Примечательной стороной таких сетей является низкая пропускная способность акустических каналов передачи, высокое время ожидания, следующее из медленного распространения звука, и высокие уровни шумов. Конечная цель при разработке подводных акустических сетей состоит в том, чтобы обеспечить самоконфигурирование узлов, которые автоматически адаптировались бы к среде.
В последние два десятилетия, акустическая технология связи под водой испытала существенный прогресс. Системы связи с повышенной скоростью передачи и надежностью теперь доступны для организации соединения в реальном масштабе времени между подводными узлами. Настоящие разработки направлены на объединение соединений точка-точка в единую сеть, чтобы удовлетворить запрос на системы, способные собирать и передавать данные с больших площадей: типа совокупности данных окружающей среды, контроля загрязнения и военного наблюдения.
Традиционный подход при исследовании океанского дна или толщи воды состоит в том, что необходимо развернуть океанографические датчики, произвести запись данных, и впоследствии поднять на поверхность оборудование с данными. Этот подход имеет несколько недостатков:
Записанные данные не могут быть переданы на поверхность, пока донная станция находится на дне.
Нет никакой связи между оборудованием, находящимся под водой и пользователем, поэтому невозможно переконфигурировать систему в случае необходимости.
Если отказ оборудования донной станции произойдет в подводном положении, то сбор данных может остановиться, или же все данные могут быть потеряны полностью. Идеальное решение при необходимости контроля областей океанской поверхности в реальном масштабе времени в течение длинных промежутков времени состоит в том, чтобы подключить донные станции с контролирующими центрами посредством беспроволочной связи. Основные подводные акустические сети формируются, путем установки двунаправленной акустической связи между узлами типа автономных подводных станций. Пользователи, расположенные на берегу могут получать данные в реальном масштабе времени от большого количества отдаленных донных станций. После оценки полученных данных они могут посылать сообщения управления любой из этих станций. Поскольку данные не хранятся более на донной станции, то их потеря, связанная с отказом оборудования последней, исключена.
Основная проблема любых донных станций на сегодняшний день тАУ это обеспечение их необходимым питанием. Процесс замены батареи является процессом дорогостоящим, поскольку включает в себя поиск донной станции, ее подъем на поверхность и обратное погружение. Энергия является самым ценным ресурсом, когда речь идет о подводных аппаратах. Сетевые протоколы должны сохранить энергию, сокращая количество повторных посылок.
Некоторые подводные решения требуют, чтобы сеть была развернута настолько быстро, насколько это возможно, при том без существенного планирования. Поэтому, сеть должна обладать способностью самостоятельно определять расположение узлов и автоматически выбирать конфигурацию с целью обеспечения эффективности передачи данных. Также, в условиях изменения состояния канала или выхода из строя части узлов в ходе работы, сеть должна динамически изменить свою конфигурацию, чтобы сохранить работоспособность и продолжить функционирование.
2.1 Гидроакустическая связь
В отличие от цифровой связи через радио каналы, где данные передаются посредством электромагнитных волн, в подводных каналах прежде всего используются акустические волны. Скорость распространения акустических волн в ГА каналах на пять порядков меньше, чем скорость распространения радиоволн. Низкая скорость распространения соответственно увеличивает время ожидания пакета в сети. Если высоко время ожидания пакета, то при разработке сетевых протоколов для ГА следует учитывать, что скорость передачи в сети будет значительно меньше, нежели в радиоканале.
Возможная пропускная способность ГА канала зависит от частоты передачи. При этом для акустических сигналов наблюдается явление многолучевости распространения, что может приводить к значительным искажениям исходного сообщения. Для борьбы с многолучевостью и Доплеровским эффектом требуется значительное снижение скорости передачи данных и применение специальных методов обработки сигналов.
До начала прошлого десятилетия для достижения надежной связи в ГА каналах использовался некогерентный прием дискретной частотной модуляции. Хотя системы НКГ ДЧМ системы эффективны в ГА каналах, их низкая пропускная способность делает их непригодными для устройств с высокой скоростью передачи данных типа многопользовательских сетей. Потребность в системах дальнего действия с высокой скоростью передачи данных привела к появлению систем узконаправленного действия с когерентными методами приема. Сегодня, когда стали доступны компьютеры с высокой вычислительной мощностью, стало возможным применение когерентного приема в подводной связи.
2.2 Гидроакустические сети
Два типа задач приветствовали развитие подводных гидроакустических сетей. Первая задача сбора данных о состоянии окружающей среды, а другая тАУ наблюдение за состоянием подводной обстановки. Как правило, сеть состоит из нескольких типов датчиков, некоторые из которых установлены стационарно, а другие на свободно перемещающихся транспортных средствах этот тип сети называется автономной Океанической Сетью, где суммарная информация состоит из набора океанографических параметров, например: температуры, солености, подводных потоков. Сеть состоит из большого числа датчиков, как правило, неподвижных или медленно передвигающихся. Такая сеть может быть быстро развернута. Задача такой сети охватить мелкую водную область. Пример такой сети, называемой SeaWeb, будет описан более подробно позже.
2.3 Сетевая топология
Есть три основных топологии, которые могут использоваться, чтобы связать сетевые узлы: централизованная, распределенная и многопролетная.
В централизованной сети связь между узлами организуется через центральную станцию, которая обычно называется сервером сети. Эта конфигурация подходит для глубоководных сетей, где поверхностный бакен может действовать в качестве центра и управлять связью с донными станциями. Главный недостаток этой конфигурации тАУ присутствие единственного пункта, отказ которого приводит к отказу всей сети. Также, из-за ограниченности диапазона частот отдельного модема, сеть не может охватить большие области.
Следующие два типа топологии принадлежат одноранговым сетям. Полностью связанная одноранговая топология обеспечивает двухточечные соединения между каждым узлом сети. Такая топология устраняет потребность в маршрутизиции. Однако, мощность выходного сигнала, необходимая для передачи сообщения на отдельные узлы, чрезмерно высока. Также, возможно что узел, который пробует посылать сообщения далекому узлу, будет попросту заглушать связь между двумя узлами, находящимися сравнительно близко от него.
Одноранговая многопролетная топология подразумевает связь только между соседними узлами. Сообщения передаются от источника до адресата путем передачи пакетов от узла до узла. Для маршрутизации используются интеллектуальные алгоритмы, которые позволяют сети адаптироваться к изменяющимся условиям. Многопролетные сети способны охватывать относительно большие области, так как диапазон сети определен числом узлов.
Одна из целей при построении ГА сетей состоит в том, чтобы значительно уменьшить потребление энергии при условии обеспечения надежной связи между узлами в сети и выходом во внешнюю сеть. Сетевая топология является важным параметром, который определяет потребление энергии. Цена, которую приходиться платить за уменьшение в потреблении энергии тАУ это потребность в сложном протоколе и увеличение длительности и времени распространения пакета. Поэтому, особое внимание нужно уделять задачам, которые являются чувствительными к временным задержкам.
2.4 Методы множественного доступа
В многих информационных сетях, включая ГА сети, связь тАУ пульсирующая, и промежуток времени, в течении которого осуществляется передача по каналу, обычно меньше чем промежуток времени, в течении которого канал простаивает. Таким образом, сетевые пользователи должны совместно использовать ресурсы канала с максимальной эффективностью посредством метода множественного доступа. Множественный доступ с кодовым разделением каналов (FDMA), делит весь спектр частот на полосы и предоставляет пользователям отдельные частотные каналы. Из-за серьезных ограничений пропускной способности и уязвимости узкополосных систем к помехам, FDMA системы не являются эффективным решением в ГА каналах связи.
Вместо деления полосы частот применяется множественный доступ с временным разделением каналов (TDMA). Производится деление всего временного интервала на интервалы времени, называемые фреймами. Коллизии в результате пересечения пакетов от смежных слотов времени предотвращена включением времен защиты, которые пропорциональны задержкам распространения сигналов в канале. TDMA системы требуют очень точной синхронизации. Имеющиеся различия времени ожидания в ГА каналах требуют значительной длительности времени защиты, что значительно ограничивает эффективность TDMA. Также, реализация системы является трудной задачей.
Множественный доступ с кодовым разделением каналов (CDMA) Зпозволяет нескольким пользователям одновременно использовать одну и ту же полосу частот. Сигналы от различных пользователей различает посредством ПСП. CDMA каналы обеспечивают большую пропускную способность, они слабо восприимчивы к разнице времен задержки при распространении сигналов. Использование этого вида множественного доступа позволяет уменьшить потребление батареи и соответственно увеличить производительность сети. Следовательно, CDMA кажется наиболее подходящим методом для организации множественного доступа в небольших подводных гидроакустических сетях.
2.5 Алгоритмы маршрутизации
Существует два основных метода, используемые для маршрутизации пакетов внутри информационной сети: использование виртуальных каналов, где все пакеты одного потока следуют одним и тем же путем через сеть, и маршрутизация датаграмм, где пакеты следуют от отправителя до получателя различными путями. В первом случае виртуальные каналы определяются перед началом передачи информации. Во втором случае, каждый узел, на который приходит пакет, принимает решение, которое состоит в том, чтобы определить узел на который следует отправить пакет.
Многие из методов маршрутизации основаны на том, чтобы определить самый короткий путь для пакетов. В этом методе каждому соединению в сети назначается стоимость, которая является функцией физического расстояния и уровня перегрузок. Алгоритм пробует находить самый короткий путь (то есть, путь с самой низкой стоимостью) от узла до получателя.
В рассматриваемых сетях главная проблема состоит в том, чтобы получить текущее состояние каждого соединения в сети, чтобы остановиться на лучшем маршруте для пакета. Однако, состояние соединений является величиной постоянно меняющейся, в этом случае количество модификаций маршрутизации может быть очень высоко.
2.6 Протоколы управления доступом
Существуют различные протоколы управления доступом, которые могут использоваться, чтобы избежать информационной потери в ГА сетях, возникающей по причине коллизий. Рассмотрим MACA протокол и его разновидности.
MACA протокол заключается в использовании двух пакетов передачи сигналов имеющих названия: Request-to-Send (RTS) и Clear-to-Send (CTS). Когда абонент А хочет послать сообщение абоненту В, он сначала отправляет сигнал RTS. Если В получает RTS, то он посылает назад команду CTS. Как только А получает CTS, он начинает передачу пакета данных. Узлы могут исследовать канал на этапе обмена сигналами RTS-CTS. Информация о состоянии канала может использоваться, чтобы установить уровни мощности выводного сигнала и типа модуляции. Эти свойства MACA протокола необходимы для эффективной разработки подводных гидроакустических сетей.
Все это обеспечивает надежную связь с минимальным потреблением энергии и позволяет избежать коллизий. Обмен RTS-CTS увеличивает объем передаваемой информации, но сокращает количество повторных передач, что позволяет снизить объем передаваемой информации.
MACA протокол гарантирует надежность непрерывной связи на сетевом уровне. Если некоторые пакеты сообщения потеряны из-за ошибок, с узлов получателя будет подан запрос на повторную передачу пакетов. На высоко надежных линиях связи этот подход позволяет увеличить пропускную способность, так как это устраняет потребность посылать квитанции на каждый отправленный пакет. В случае, если передача идет через канал связи с низким качеством, сообщение будет содержать ошибочные пакеты. Восстановление ошибок в пакете данных на сетевом уровне будет требовать чрезмерной задержки.
Эффективность и надежность MACA протокола может быть значительно увеличена за счет создания надежных соединений между близко расположенными узлами. Для этой цели был предложен MACAW протокол, где квитанция передается после каждой успешной посылки. Включение дополнительного пакета в пересылке увеличивает потребление энергии, что в свою очередь уменьшает производительность системы. Однако для гидроакустических систем, при применении такого метода все равно наблюдается прирост производительности. Протокол MACAW не использует управление мощностью передачи и возникающие асимметрии в канале. Его эффективность при использовании управления мощностью передачи пока еще не исследована.
2.7 Методы запроса авто-повторений
Запрос авто-повторений (ARQ) используется, чтобы обнаружить ошибочных данных в процессе передачи по каналу связи и в случае их обнаружения осуществит повторную передачу пакетов, содержавших ошибки. Самая простая схема запроса авто-повторений, которая может быть использована в гидроакустическом канале это stop and wait RQ, где источник пакета ждет квитанции от узла адресата для подтверждения передачи пакета без ошибок. Так как канал не используется в течение времени между передачей пакета и приемом квитанции, эта ARQ схема имеет низкую производительность. В go back-N и селективном методах повторении ARQ , узлы передают пакеты и получают квитанции непосредственно в процессе передачи пакетов, поэтому требуют канал, поддерживающий полный дуплекс. Деление ограниченной пропускной способности ГА каналов на два канала реализации полного дуплекса может значительно уменьшать скорость передачи данных по физическому каналу. Однако, эффект от двух этих методов еще необходимо исследовать.
Схема селективного метода может быть модернизирована, чтобы работать в симплексных ГА каналах. Вместо подтверждения каждого пакета в процессе приема, получатель будет ждать пока не будут переданы N пакетов и после этого посылать квитанцию с номерами пакетов, полученных без ошибок. Соответственно, источник пакетов определит ошибочные пакеты по принятой квитанции и пошлет другую группу N пакетов, которая будет содержать повторно передающиеся и новые пакеты.
Подтверждения могут быть обработаны двумя возможными способами. В первом подходе, который называется тАЬположительное подтверждениетАЭ, в случае приема пакета, не содержащего ошибок, узел адресата пошлет квитанцию исходному узлу. Если источник не получает квитанцию исходному узлу. Если источник не получает квитанцию за заданный промежуток времени, то он повторно передаст этот пакет данных. В случае отрицательного подтверждения, адресат посылает квитанцию, если получает поврежденный пакет или не получает его вообще. Отрицательное подтверждение может помогать сохранять энергию, устраняя потребность посылать квитанции каждый раз и повторно высылать пакеты данных в случае потери квитанции. Когда объединяют MACA протокол и отрицательную схему подтверждения, обеспечивается высокая надежность связи между узлами источника и получателя в процессе обмена RTS-CTS.
2.8 Пример разработки: сеть SeaWeb
Примером реализации подводной акустической сети служит Telesonar тАУ программа американского флота и SeaWeb.
Telesonar соединяет распределенные подводные узлы, объединяет их в один ресурс, обрабатывает информацию и передает ее в подводное боевое пространство. SeaWeb обеспечивает передачу команд, управление, связь и навигационную инфраструктуру для координирования автономных узлов с целью выполнения поставленных задач в любой точке подводной среды. Организация сети SeaWeb подходит для океанографической телеметрии, подводного управления транспортными средствами и других целей.
Telesonar и SeaWeb экспериментально исследует многие аспекты проблем распространения, передачи сигналов, преобразования, организации сети и защиты передачи. Были проведены испытания SeaWeb 98, 99 и 2000.
2.9 Цели эксперимента и подход
Telesonar формирует цифров
Вместе с этим смотрят:
IP-телефония. Особенности цифровой офисной связи