Измерения параметров сигнала. Структура оптимального измерителя
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
кафедра ЭТТ
РЕФЕРАТ на тему:
ВлИзмерения параметров сигнала. Структура оптимального измерителяВ»
МИНСК, 2008
Сущность, условия решения и критерий оптимальности задачи измерения параметров сигнала
Измеряемые параметры сигнала (время запаздывания, доплеровское смещение частоты, наклон и кривизна волнового фронта) измеВнняются во времени. Поэтому задача измерения по существу сводится к наиболее точному воспроизведениюэтих параметров, во времени. Для систем радиолокационных систем это означает наиболее точное воспроизведение во времени дальности, скорости и угловых координат объекта наблюдения. Для радиосистем передачи информации это означает наВниболее точное воспроизведение во времени передаваемого информаВнционного сообщения.
Постановка задачи измерения параметров сигнала, как и всякой другой задачи, предполагает формулировку некоторых условий ее решения. К числу таких условий относятся следующие исходные предполоВнжения, выступающие в роли постулатов:
- самостоятельность задачи измерения,
-независимость измерения искомого параметра от других, считающихся известиями.
Самостоятельность задачи измерения воспринимается с некотоВнрой степеньВ» условности.
В действительности, решая задачу обнаВнружения, т.е. принимая решение о наличии или отсутствии сигнала по каждому элементу разрешения пространства наблюдения, мы тем самым вместе с решением о наличии сигнала в данном элементе разрешения формируем оценку о параметрах сигнала с точностью до элеменВнта разрешения (по дальности, скорости, угловым координатам). ОдВннако для задачи измерения параметров сигнала характерны принциВнпиально другиеВ» более высокие, точности. Поэтому процесс обнаруВнжения сигнала и измерения его параметров целесообразно рассматриВнвать раздельно. Предполагается наличие обнаружителя, с помощью которого достоверно (D =1;F =0) устанавливается факт наличия сигнала в каком-либо элементе пространства наблюдения и осуществляется первоначальное грубое определение параметров сигВннала (с точностью до элемента разрешения), позволяющее перейти к точному измерению.
Итак, согласно первому постулату о самостоятельности задачи измерения и достоверности обнаружения источником информации и объектом обработки (анализа) при решении задачи измерения параВнметров сигнала является аддитивная смесь принятого полезного сигнала и помех:
f(t)=m(t,a,)+(t)
Принятый полезный сигнал зависит от некоторого числа измеВнряемых (a1, a2,тАжak) параметров (время запаздывания, доплеровское смещение частоты, наклон и кривизне волнового фронта) и некоторого числа неизменяемых (b1, b2,тАж bl) или параВнзитных параметров (случайные амплитуда и фаза). Измеряемые паВнраметры a1, a2,тАжak в общем случае являются функциональВнноили статистически зависимыми. Это обстоятельство приводит к необходимости совместного измерения взаимозависимых параметров, что сильно усложняет решение задач синтеза и анализа измерителей параметров сигнала. Поэтому в дальнейшем рассматривается лишь случай независимого от других измерения одного параметра, когда все остальные параметры предполагаются известными. В случае маВнлых ошибок измерения, когда справедливы линейные приближения, раздельный синтез и анализ измерителей отдельных параметров вполВнне допустим.
Под упомянутой выше ошибкой измерения параметра подразумеваВнется разность между измеренным значением параметра a и его исВнтинным значением aц, закодированным в принятом сигнале:
Daц= aтАФ aц.
В общем случае ошибка измерения является функцией времени и предВнставляет собой разность
где aц(t - изменявшийся во времени измеряемый параметр, закодированный в принятом сигнале (задающее воздействие измерителя);
a(t) - измеренное значение параметра, т.е. результат воспроизведения задающего воздействия.
Естественным критерием качества измерения параметра являетВнся минимум ошибки измерения Daц. Однако формулировка критерия качества в такой форме не позволяет обеспечить осознания преемВнственности основных задач радиосистем (обнаружения, распознавания-различения и измерения) с точки зрения единства центрального звена решенияэтих задач - пространственно-временной и поляризаВнционной обработки сигнала на фоне помех.
Действительно, в результате пространственно-временной и поВнляризационной обработки принятого сигнала на фоне помех формируВнется отношение правдоподобия (или любая однозначно связанная с ним величина). При этом фактически происходит сопоставление приВннятого сигнала и его прообраза по измеряемым параметрам.
Если характеристики и параметры принятого сигнала и его прообраза согласованы, то отношение правдоподобия максимально.
Факт согласованности характеристик и параметров привитого сигнала и его прообраза, устанавливаемый по максимуму отношения правдоподобия, может быть использован для формулировки критерия оптимальности в форме, удовлетворяющей сформулированному выше требованию: оптимальный измеритель должен обеспечить или минимум ошибки измерения, или максимум отношения правдоподобия.
Сформировав отношение правдоподобия и подобрав тем или иным способом такое значение измеряемого параметра, при котором отношение правдоподобия максимально, можно тем самым измерить с минимальной ошибкой тот или иной параметр сигнала. В зависиВнмости от способа выбора измеряемого параметра различают измериВнтели, классификация которых излагается ниже.
Классификация измерителей
Измерители различаются по следующим классификационным призВннакам;
- по степени участия человека (эргатические - с участием человека в системе "индикатор-оператор" и автоматические - без участия человека),
- по используемому времени (с формированием разовой оценки, т.е. с оцениванием по результатам
одного обращения к объекту наблюдения Ta = Tн<< Tob и с формированием объединенВнной оценки, т.е. оцениванием по результатам нескольких обращеВнний к объекту наблюдения Ta >> Tн>> ),Tн Tob
- по наличию или отсутствию обратной связи (следящие или замкнутые измерители и неследящие или разомкнутые измерители).
Неотъемлемой частью эргатических измерителей является сисВнтема "индикатор-оператор". Человек-оператор, наблюдая за экраВнном индикатора, используя либо неподвижные калибрационные метки (механические или электронные), либо подвижные метки, осуществляет максимально правдоподобную оценку координат или параметров движения целей. При этом оценивание измеряемого паВнраметра возможно как по результатам одного обращения к цели ( Та = Тн << Тоб ), что характерно для РЛС кругового обзора с большим периодом обзора (единицы секунд), так и по результатам нескольких обращений к цели (Та >> Тоб >> Тн), что характерно для РЛС секторного обзора с высокой частотой обзора (десятки герц и более).
Эргатические измерители могут находиться как в следящем, так и неследящем режимах. Неследящий режим измерения (рис. 1) характерен для систем "индикатор-оператор" с неподвижными калибрационными метками, когда оценка измеряемого параметра осущестВнвляется оператором непосредственно по максимуму отношения правВндоподобия, т.е. путем выбора такого значения измеряемого параВнметра, при котором сигнал на выходе многоканального обнаружитеВнля, отображаемый на экране индикатора, максимален.
Следящий режим измерения (рис. 2) характерен для систем "индикатор-оператор" с подвижными метками (механическимиилиэлектронными). При этом имеет место визуальная оценка величины и знака рассогласования между истинным значением измеряемого паВнраметра (положением Метки на экране индикатора) и измеренным его значением (положением подвижной механической или электронной метВнки). Наблюдая и оценивая это рассогласование, оператор с учетом обретенного им опыта рассчитывает мышечную реакцию (управлявшее воздействие), прикладываемую к исполнительному устройству (мехаВннизму перемещения механической или электронной метки) для того, чтобы ликвидировать наблюдаемое им рассогласование.
Автоматические измерители работающие без участия человека (рис. 3), могут формировать как разовую (или единичную) оценВнку измеряемого параметра заодно обращение к цели - время наблюВндения (Та = Тн << Тоб), так и объединенную оценку за несВнколько обращений к цели ( Та >> Тоб >> Тн).
Рис. 1 Эргатические неследящие измерители:
а) с формированием разовой оценки:
б) с формированием объединенной оценки
Рис. 2 Эргатические следящие измерители:
а) с формированием разовой оценки
б) с формированием объединенной оценки
Д(,u)=
|