Основы теории трактора и автомобиля

Министерство сельского хозяйства РФ

Брянская государственная сельскохозяйственная академия

Кафедра тракторов и автомобилей

КУРСОВАЯ РАБОТА

по разделу: тАЬ Основы теории трактора и автомобиля тАЬ

Выполнил: студент группы

Принял: профессор, доктор технических наук Сидоров В.Н.

Брянск


Индивидуальное задание для курсовой работы

по курсу "Тракторы и автомобили"

Студент Сидоров М.В. Группа М41

Шифр задания по трактору __________14 14 14____________________

Прототип трактора и двигателя __Т-25 Д-21_______________________

2. Число основных передач z______7_____________________________

3. Номинальная частота вращения двигателя nен ,об/с_ _29___________

4. Степень сжатия e ___16.50____________________________________

5. Расчетная (теоретическая) скорость трактора

на 1-й передаче, vтн ,м/c _____1.5___________________________

6. Давление наддува рк, МПа____--______________________________

7. Основной агрофон для определения параметров трактора:___4_____

8.Агрофон для сравнения:__ ___3________________________________

Дата выдачи "_12_"_сентября__2000 г.

Подпись преподавателя _______________


С О Д Е Р Ж А Н И Е

1 Тяговый расчет трактора

1.1 Задачи расчета и исходные данные

1.2 Определение рабочего тягового диапазона

1.3 Определение эксплуатационной массы трактора

1.4 Расчет основных рабочих скоростей

1.5 Определение динамического радиуса ведущих колес

1.6 Расчет передаточных чисел трансмиссии

1.7 Определение коэффициента полезного действия (КПД) трансмиссии

1.8 Определение номинальной эксплуатационной мощности двигателя

2 Тепловой расчет двигателя

2.1 Задачи расчета и исходные данные

2.2 Расчетные формулы

2.2.1 Процесс впуска

2.2.2 Процесс сжатия

2.2.3 Процесс сгорания

2.2.4 Процесс расширения

2.2.5 Процесс выпуска

2.2.6 Расчет индикаторных показателей

2.2.7Расчет эффективных показателей и определение основных размеров двигателя

2.3 Построение индикаторной диаграммы двигателя

3 Динамический расчет кривошипно-шатунного механизма

3.1 Расчет усилий действующих в КШМ

3.2 Определение параметров маховика

4.Расчет и построение регуляторной характеристики двигателя и тяговой характеристики трактора с использованием ПЭВМ

4.1 Подготовка исходных данных для расчета на ПЭВМ

4.2 Расчет регуляторной характеристики двигателя

4.3 Расчет тяговой характеристики

4.4 Построение тяговой характеристики трактора

Литература

Приложение


1.ТЯГОВЫЙ РАiЕТ ТРАКТОРА

1.1 ЗАДАЧИ РАiЕТА И ИСХОДНЫЕ ДАННЫЕ

Тяговый расчет проводим для определения основных параметров трактора: эксплуатационной массы, расчетных скоростей движения, передаточных чисел трансмиссии и мощности двигателя. Исходными данными для тягового расчета являются: назначение, тип и тяговый класс трактора, и его конструктивный прототип.

Результат тягового расчета используем для подготовки исходных данных для расчета регуляторной характеристики двигателя и тяговой характеристики трактора с применением ПЭВМ.

1.2 ОПРЕДЕЛЕНИЕ РАБОЧЕГО ТЯГОВОГО ДИАПАЗОНА

Тяговый диапазон проектируемого трактора на основных передачах охватывает всю сумму нагрузок в соответствии с агротехническими требованиями, предъявляемыми к трактору данного тягового класса, и некоторую часть нагрузок, относящихся к тяговой зоне соседних с ним классов. Каждому из классов типажа соответствует определенная номинальная сила тяги. Типаж тракторов допускает отклонение силы тяги от номинальной для колесных тракторов 20..25% [5]. Увеличение силы тяги учитывается введением коэффициента расширения тяговой зоны трактора eт. По заданию

(1)

где P- номинальная сила тяги на крюке предыдущего по тяговому классу, кН.

Силу тяги Fкр.н. , развиваемую на высшей передаче определяемпо формуле: Pкр.н.= (2)

где сила тяги, развиваемая трактором на высшей передаче основной группы передач при номинальной загрузке двигателя определяем;

диапазон тяги.

Для современных сельскохозяйственных универсально-пропашных тракторов dт= 2..2,4 [6].

1.3 ОПРЕДЕЛЕНИЕ ЭКСПЛУАТАЦИОННОЙ МАССЫ ТРАКТОРА

Эксплуатационная масса трактора должна обеспечивать сцепление движителя с почвой, необходимое для реализации максимальной касательной силы Pк max , кН [6]. Это условие может быть записано выражением:

, (3)

где jдоп - допустимая величина коэффициента использования сцепного веса трактора, соответствующая допустимому буксованию его движителя. Выбирается для заданного основного агрофона.

lсц - коэффициент перераспределения сцепной массы, показывающий долю эксплуатационной массы трактора, нагружающую ведущие колеса для тракторов с колесной формулой 4К2 равен 0,75тАж0,8[0,8];

mэ - эксплуатационная масса трактора, кг;

g - ускорение свободного падения, м/с2.

В тоже время, максимальная касательная сила, Pк maxвкН должна соответствовать условию типажа [6]:

, (4)

где f - коэффициент сопротивления качению (выбираем в соответствии с индивидуальным заданием).

Из условий (3) и (4) следует что:

(5)

Следовательно минимальное значение эксплуатационной массы трактора должно быть выбрано таким образом, чтобы при работе трактора в соответствующих условиях с силой тяги, развиваемой трактором на первой передаче при номинальной загрузке двигателя jдоп колес не превышало допустимых в этом случае пределов.

= (6)

1.4 РАiЕТ ОСНОВНЫХ РАБОЧИХ СКОРОСТЕЙ

Для расчета ряда основных рабочих скоростей трактора, диапазон скоростей, который характеризуется отношением высшей рабочей скорости к скорости на первой передаче основного ряда рабочих скоростей принимаем равным v оснT=2[6].

, (7)

где z - количество передач.

Теоретическую скорость Vт, движения м/с на любой передаче определяем отношением [1]:

, (8)

где к - номер передачи.

м/с;

м/с;

м/с;

м/с;

м/с;

м/с.

1.5 ОПРЕДЕЛЕНИЕ ДИНАМИЧЕСКОГО РАДИУСА ВЕДУЩИХ КОЛЕС

Динамический радиус rк ведущих колес колесного трактора при обычных шинах определяем по следующей формуле:

rк = 0,0254[0,5d + (0,8..0,85) B] м, (9)

где d и B - соответственно диаметр посадочного обода и ширина профиля колеса в дюймах.

Принимаем динамический радиус ведущих колес rк =0,6 м по протатипу.

1.6 РАiЕТ ПЕРЕДАТОЧНЫХ ЧИСЕЛ ТРАНСМИССИИ

Передаточное число трансмиссии на первой передаче (для трактора Т-25А) определяем по формуле:

(10)

где nен- номинальная частота вращения коленчатого вала двигателя, об/мин.

Остальные числа трансмиссии рассчитываем по формуле:

, (11)

где к - номер передачи.

;

;

;

;

;

.

1.6 ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПОЛЕЗНОГО ДЕЙСТВИЯ (КПД) ТРАНСМИССИИ

Механический КПД трансмиссии учитывает потери на трение, взбалтывание масла и т.п. Он зависит от числа пар зубчатых передач, находящихся в зацеплении, типа шестерен и способа их соединения между собой, от типа промежуточных соединений и муфт сцепления, вязкости и уровня заливаемого масла и других факторов. Часть потерь зависит от значения передаваемых моментов, а другая часть потерь зависит в основном от скорости вращения деталей и почти не зависит от нагрузочного режима.

Для тракторов с колесной формулой 4К2 определяем КПД ветвей трансмиссии, соединяющих маховик с задними ведущими колесами. Распределение мощности по ведущим мостам зависит от распределения массы трактора по мостам, схемы трансмиссии, почвенного фона, действия на трактор со стороны с.-х. машины, сил и моментов, величины и других факторов.

Механический КПД ветвей трансмиссии, соединяющих маховик с задними ведущими колесами представим как

hтрi= hхолhн = ( 1- x )hцnhкm, (12)

где hхол и hн - КПД, учитывающие потери соответственно холостого хода и при работе под нагрузкой;

hц и hк - КПД, соответственно цилиндрической и конической пар шестерен (hц=0,985..0,99 и hк=0,975..0,98);

m и n - соответственно число пар цилиндрических и конических шестерен, находящихся в зацеплении на данной передаче

x - коэффициент, учитывающий потери холостого хода в трансмиссии (x=0,03..0,05).

Находим КПД трансмиссии для первой и второй передач

hтр1(1-2) =

Механический КПД привода ВОМ hвом рассчитываем в соответствии с формулой (12), при этом значение x выбираем по меньшим пределам. Расчет проводится для зависимого привода ВОМ, так как такой привод планируем использовать для технологического модуля.

hвом = hхолhн = ( 1- x )hцnhпл, (13)

где hпл -КПД планетарного механизма (hпл =0,96).

hвом(1-2) =

1.7 ОПРЕДЕЛЕНИЕ НОМИНАЛЬНОЙ ЭКСПЛУАТАЦИОННОЙ МОЩНОСТИ ДВИГАТЕЛЯ ТРАКТОРА

Эксплуатационную мощность двигателя Nен, для обеспечения заданных тягово-приводных и скоростных показателей трактора подсчитываем по формуле:

= кВт (14)

где Pк.н.1 - номинальная касательная сила тяги на 1 основной передаче, кН.

Nвом - мощность, необходимая для привода рабочих машин от вала отбора мощности на расчетном тяговом режиме, кВт.

Номинальную касательную силу тяги на 1-ой передаче определяем по формуле: = 8,198 кН (15)

где Pf - сила сопротивления качению.

Она определяется по формуле:

=кН (16)

здесь G - вес трактора.


2 ТЕПЛОВОЙ РАiЕТ ДВИГАТЕЛЯ

2.1 ЗАДАЧИ РАiЕТА И ИСХОДНЫЕ ДАННЫЕ

В задачи теплового расчета двигателя, прежде всего, входит определение параметров состояния рабочего тела в характерных точках рабочего цикла двигателя и определение энергетических и экономических показателей цикла и двигателя, на основании которых рассчитываем также основные размеры двигателя (диаметр цилиндра и ход поршня). Основными исходными данными для расчета являются: номинальная эффективная мощность и соответствующая ей частота вращения коленчатого вала двигателя; степень сжатия; тип камеры сгорания; коэффициент избытка воздуха; вид топлива; расчетные параметры окружающей среды (давление и температура) и ряд других.

Тепловой расчет двигателя выполняем по исходным данным в соответствии с индивидуальным заданием на курсовую работу.

В задании на курсовую работу приводится часть необходимых для теплового расчета исходных данных, остальными задаемся, ориентируясь на прототип двигателя.

Тепловой расчет выполняем на ПЭВМ по программе, составленной на кафедре тракторов и автомобилей.

Среди исходных данных задаемся коэффициентом избытка воздуха a, подогревом заряда на впуске DT степенью повышения давления lp.

Для номинального режима эти значения принимаем в пределах:

a = 1,3..1,65 - для дизельных двигателей с неразделенной камерой сгорания;

DT = 10..30 К - для дизелей без наддува;

lp= 1,6..2,5 - для дизелей с неразделенной камерой сгорания.

На величину степени повышения давления влияет режим впрыска топлива, форма камеры сгорания и способ смесеобразования.

При выборе lp учитываем, что увеличение lp приводит к уменьшению степени предварительного расширения r. Для большинства дизелей r = 1,2..1,7 (большие значения характерны для раздельных камер сгорания).

Ниже приводятся обозначения величин с указанием их размерности, которые приняты в расчетных формулах. Эти обозначения приводятся, в основном, в том порядке, в каком они встречаются по алгоритму расчета.

Таблица 1.

ОбозначенияПараметрыРазмерность
123

mO

теоретически необходимое количество воздуха для сгорания 1 кг топливакг/кг топлива

МО

теоретически необходимое количество воздуха для сгорания 1 кг топливакмоль/кг топлива

М1

количество подаваемого свежего заряда на 1 кг топливакмоль/кг топлива

М2

Количество продуктов сгорания на 1кг топливакмоль/кг топлива
Смассовая доля углерода в топливе-
Нмассовая доля водорода в топливе-
Омассовая доля кислорода в топливе-

nН

номинальная частота вращенияоб/с

рO

расчетное атмосферное давлениеМПа

Тс

расчетная температура окружающего воздухаК

рК

давление после компрессора (на впуске)МПа

TK

температура после компрессора (на впуске)К

nK

показатель политропы сжатия в компрессоре-

а

потеря давления на впускеМПа

TK`

температура на впуске (с учетом подогрева)К
DTподогрев свежего заряда на впускеК

ра

давление в цилиндре в конце впускаМПа

ТА

температура в конце процесса впускаК
eстепень сжатия-

рr

давление в конце процесса впускаМПа

Tr

температура в конце процесса впускаК

hV

коэффициент наполнения цилиндров-

gr

коэффициент остаточных газов-

n1

показатель политропа сжатия-

pc

давление в конце процесса сжатияМПа

Тс

температура в конце процесса сжатияК
aкоэффициент избытка воздуха-

mт

молекулярная масса паров топливакг/кмоль

m0

химический коэффициент молеку- лярного изменения горючей смеси-
mДействительный коэффициент молекулярного изменения рабочей смеси

Hи

низшая теплота сгорания топливакДж/кг

Нрс

теплота сгорания рабочей смесикДж/кмоль

xz

коэффициент использования теплоты в процессе сгорания-

Сvc

средняя мольная изохорная теплоемкость рабочей смесикДж/кмоль

Сvz

средняя мольная изохорная теплоемкость продуктов сгораниякДж/кмоль

λp

степень повышения давления-

рz

максимальное расчетное давление в циклеМПа

Тz

температура в конце процесса сгоранияК
А

коэффициент в уравнении для расчета Тz

кДж/кмоль
B

коэффициент в уравнении для расчета Тz

кДж/кмоль
F

коэффициент в уравнении для расчета Тz

кДж/кмоль
rстепень предварительного расширения-

n2

показатель политропы расширения-
dстепень последующего расширения-

pB

давление в конце процесса расширенияМПа

TB

температура в конце процесса расширенияК

pi

теоретическое среднее индикаторное давлениеМПа

pi

среднее индикаторное давлениеМПа

pк

плотность заряда на впускекг/м
Rгазовая постоянная для воздухаДж/кгК

hi

индикаторный КПД-
nкоэффициент полноты индикаторной диаграммы-

gi

удельный индикаторный расход топливаг/кВтч

2.2 РАiЕТНЫЕ ФОРМУЛЫ

Формулы приведены по каждому процессу, составляющему действительный цикл ДВС, а также для расчета индикаторных показателей. Обозначения величин, входящих в формулу, и их размерности приведены выше.

2.2.1 Процесс впуска

Процесс впуска является сложным газодинамическим процессом, на протекание которого оказывает влияние большое количество факторов. При расчете определяем давление и температура рабочего тела в конце процесса впуска, а также коэффициент остаточных газов и коэффициент наполнения цилиндров.

pa = pк - Dpa (17)

Величина потерь давления на впуске зависит от параметров впускаемого тракта и быстроходности двигателя и лежит в пределах:

Dpa = (0,04..0,18)p0 - для дизельных двигателей без наддува.

На ПВЭМ Dpк рассчитываем по эмпирической формуле: для дизельных двигателей без наддува

Dpa = (0,01 + 3 ×10 -3 nн) p0 (18)

При этом для дизельных двигателей без наддува принимаем:

p0= 0,1МПа, Тк = Т0= 288К.

ТтАЩк = Тк + DТ (19)

(20)

(21)

(22)

Значениями pr и Tr входящими в формулы (20)..(22) предварительно задаемся:

pr = (1,05..1,25) p0 - для двигателей без турбонаддува;

Тr= 700..950К - для дизельных ДВС.

При этом большие значения pr принимаем для высокооборотных двигателей. Задаваясь величиной Тr, учитываем, что при увеличении степени сжатия она снижается, а при увеличении оборотов - возрастает. Величина Тr корректируется после расчета процесса выпуска.

2.2.2 Процесс сжатия

При расчете процесса сжатия определяем давление и температуру в конце процесса сжатия, полагая, что сжатие представляет собой политропный процесс с показателем политропы n1.

pc= pae (23)

Тс = Таe (24)

Величина среднего значения показателя политропы n1 зависит от степени сжатия, быстроходности двигателя, теплообмена и других факторов. Для дизельных двигателей его значение лежит в пределах:

n1 = 1,34..1,39.

В программе расчета на ПЭВМ для определения n1, используем эмпирические формулы:

для дизельных двигателей

n1=1,368-[1,5×10-4+2×10-6(e-1)](Tа-400)-1,5×10-3(e-10)+0,002*(nен-30) (27)

2.2.3 Процесс сгорания

В процессе сгорания достигаются максимальные значения давления и температуры рабочего тела в цикле, определение которых и составляет основную задачу расчета процесса сгорания.

При расчете учитываем состав топлива и качество горючей смеси, а также способ смесеобразования, который влияет на выбор степени повышения давления lр.

(26 )

(27)

(28)

, при a< 1 (29)

, при a>=1 (30)

(31)

(32)

(33)

(34)

Температуру в конце видимого процесса сгорания Тz определяем из уравнения сгорания, которое имеет вид:

xZH р.см + (Сvc + 8,314lp) Тc = m (Сvz + 8,314)Тz(35)

После подстановки приближенных эмпирических выражений для теплоемкостей:

CVc= 20,16 + 1,728 10-3 Тс ; (36)

CVz=(18,4+2,6a)+(1,549+1,382/a)10-3Тz, при a< 1; (37)

CVz=(20,10+0,92/a)+(1,549+1,382/a)10-3Тz, при a>1; (38)

уравнение сгорания приводим к виду

АTz2 + ВТz + F = 0 . (39)

ОтВнсюВнда:

(40)

где, коэффициенты определяются выражениями:

A = (1,549 + 1,382/a)10-3 ;

B = (28,414 + 0,92/a)m ; (41)

F = -(0,82Hрс + 20,16 Тc+ 8,314 Тc lp + 1,728Tc210 тАУ3)

рz = lр pс - для дизельных ДВС (42)

r = m Т/ l р Тc. (43)


2.2.4 Процесс расширения

При расчете полагается, что расширение является политропным процессом с постоянным показателем политропы n2.

рвz/d (44)

(45)

Значение среднего показателя политропы n2 , также как и n1 , зависит от многих факторов и лежит в пределах:

n2 =1,24..1,30 - для дизельных ДВС.

В программе расчета их находим по эмпирическим формулам:

n2 = 1,263 - 2,6*10-5 (Tz - 2000) + 4*10-4 d+ 0,028( a - 1) (46)

2.2.5 Процесс выпуска

Значениями давления рb и температуры Тb в конце процесса задаем на начальной стадии теплового расчета.

Проверку ранее принятой температуры остаточных газов производим по формуле:

(47)

Если полученное по этой формуле значение Тr существенно отличается от принятого ранее (dTr > 10%),то корректируем расчет процессов цикла при уточненном значении Тr , принятом предварительно в разделе 2.2.1.

В программе расчета величина отклонения Тrдопускается не более 10К.

2.2.6 Расчет индикаторных показателей

Индикаторными показателями оценивают энергетические возможности, качество и эффективность рабочего цикла.

(48)

(49)

(50)

Значение коэффициента полноты индикаторной диаграммы принимается в пределах:

g= 0,92..0,95 - для дизельных двигателей.

2.2.7 Расчет эффективных показателей и определение основных размеров двигателя

Cредняя скорость поршня

Wп ср = 2×10 -3 S×neн м/с. (51)

Для современных двигателей W n ср = 5,5..10,5 м/с.

Определяем среднее условное давление механических потерь двигателя, включающие внутренние потери. Внутренние потери включают все виды механического трения, потери на газообмен, на привод вспомогательных механизмов (вентилятор, генератор, топливный, водяной и масляный насосы и др.) вентиляционные потери (движение деталей в среде воздушно-масляной эмульсии и в воздухе), газодинамические потери в дизелях с разделенными камерами сгорания.

Так как до 80 % всех механических потерь составляют потери на трение, то с приближением принимаем, что среднее условное давление механических потерь

pмп=a+b Wnср Мпа. (52)

где а и в - коэффициенты, зависящие от типа, конструкции, размеров, числа цилиндров и теплового состояния двигателей и приведены в таблице 3;

Wn ср - средняя скорость поршня, м/с.


Таблица 3. Значение коэффициентов a и b

Типы двигателяа, МПаb, МПа
Дизели с нераздельной камерой сгорания0,0890,012

Зная эффективную мощность, литраж двигателя и номинальную частоту вращения коленвала, определяем среднее эффективное давление:

МПа, (53)

Vh - рабочий объем цилиндра, л;

i - число цилиндров;

ne - частота вращения коленвала, с -1;

t - коэффициент тактности (t = 4 - для 4-х тактных двигателей);

N - номинальная мощность двигателя, кВт.

Среднее эффективное давление - условное постоянное давление газов за ход поршня совершающее работу, равную эффективной работе цикла.

Рабочий объем одного цилиндра (л):

Vh = Vл / i л. (54)

Для определения диаметра цилиндра D задаемся величиной S/D. В работе это отношение принимаем как у прототипа. У автотракторных двигателей

S/D = 0,9..1,3.

Диаметр цилиндра рассчитываем:

мм (57)

В соответствии с протатипом принимаем D мм.

Механический КПД двигателя:

(56)

Этот показатель характеризует степень использования работы, совершаемой газами внутри цилиндра для получения полезной работы на валу двигателя.

Эффективный КПД:

h e = hi h мп (57)

Эффективный крутящий момент для номинального режима:

нм. (58)

Здесь N e приводим в кВт, ne - в с-1 .

В качестве одного из показателей, характеризующих форсировку двигателя используется литровая мощность

кВт/л (59)

Для современных дизельных двигателей:

Nуд.л = 10 ..25 кВт/л; mуд = 5..13 кг/кВт;

Полученные результаты сводим в таблицу 4.

Таблица 4 Основные параметры двигателя и рабочего цикла

НаименованиеОбозначениеЗначение
Эффективная номинальная мощность, кВт

Nен

16,7

Частота вращеня номинальная, с-1

nен

29
Средняя скорость поршня, м/с

Wп ср

6,4
Среднее условное давление механических потерь, Мпа

pмп

0,177
Среднее эффективное давление, Мпа

Ре

0,684
Рабочий объем одного цилиндра, л

Vh

0,86
Диаметр цилиндра, ммD110
Механический КПД двигателя,

0,79
Эффективный КПД ,

h e

0,34
Эффективный крутящий момент, нм

91,7
Литровая мощность, кВт/л

Nуд.л

9,7

2.3 ПОСТРОЕНИЕ ИНДИКАТОРНОЙ ДИАГРАММЫ ДВИГАТЕЛЯ

Индикаторная диаграмма двигателя - это графическое представление процессов, составляющих рабочий цикл двигателя в координатах P-V. Давление рабочего тела Р откладываем по оси ординат, а объем занимаемый им в цилиндре двигателя V - по оси абсцисс. Поскольку этот объем является линейной функцией перемещения поршня, то для удобства часто давление откладываем как функцию перемещения (хода) поршня (S). Масштабы по осям выбираем удобными с точки зрения построения и дальнейшего считывания с графика изображенных величин. Например, для давления p = 0,05 МПа/мм. Соотношение масштабов по осям рекомендуется принимать так, чтобы высота диаграммы в 1,4..1,7 раза превышала ее основание.

В курсовой работе рекомендуется при построении индикаторной диаграммы пользоваться относительным объемом Vx = V/Vа . То есть, точка В (рис. 1), соответствующая полному объему цилиндра по оси абсцисс имеет координату равную 1, а точка А, соответствующая объему камеры сгорания координату 1/x. Отрезок ОА соответствующий объему камеры сгорания в этом случае равен: ОА = АВ/(e-1) (60)

Политропы сжатия и расширения можно строить графическими или аналитическим методом. Используем аналитический метод, при котором координаты промежуточных точек рассчитываем по формулам:

- для политропы сжатия: (61)

- для политропы расширения: (62)

Результаты расчета удобно представить в виде таблицы 2.

Отложив и соединив тонкими линиями все расчетные точки получим расчетную индикаторную диаграмму. Для получения действительной индикаторной диаграммы необходимо "скруглить" расчетную на участках, изображающих процессы сгорания и выпуска-впуска так как показано на рис 1/x. С учетом углов впрыска и воспламенения топлива, открытия и закрытия клапанов.

Таблица 2. Результаты расчета политроп сжатия и расширения

Vx=V/Va

10,6670,50,3330,20,1250,11/d1/x

1/Vx

11,5235810de
сжат.

рxa(1/Vx)n1

0,0900,1500,2300,4000,8101,5502,1002,3104,190
расш.

рxb(1/Vx)n2

0,3260,5400,7901,3202,5404,6406,1706,7106,710

3 ДИНАМИЧЕСКИЙ РАiЕТ КРИВОШИПНО-ШАТУННОГО МЕХАНИЗМА

Расчет состоит в определении основных сил, действующих в КШМ и определении параметров маховика.

Исходными данными для расчета являются: результаты теплового расчета двигателя, конструктивный прототип двигателя, значение номинальной эффективной мощности, полученной в тяговом расчете трактора, или автомобиля и значение номинальной частоты вращения коленчатого вала.

По результатам расчета необходимо выполнить следующие листы графической части: 1лист - диаграмма газовых, инерционных и суммарных сил; 2лист - диаграммы сил N,Рш,K' и T, действующих в КШМ; 3 лист -диаграмма суммарного крутящего момента.

3.1 РАiЕТ УСИЛИЙ ДЕЙСТВУЮЩИХ В КШМ

Определение усилий, действующих в КШМ, необходимо для расчета деталей двигателя на прочность и определения нагрузок на подшипники. При расчете КШМ силы трения и тяжести не учитываем и принимаем, что коленвал вращается с постоянной угловой скоростью, а картер неподвижен. Таким образом, основные силы при расчете деталей КШМ - силы давления газов и инерции движущихся масс. Схема сил, действующих в КШМ, приведена на рис. 2.

Так как на поршень во внутренней полости картера действует атмосферное давление, то избыточное давление газов на поршень определяем

pг = p x - p о , (62)

где p x - текущее абсолютное давление газов в цилиндре ( определяется по индикаторной диаграмме), МПа;

pо - атмосферное давление (pо = 0,1 МПа).

Вдоль оси цилиндра на поршень действует сила давления газов и силы инерции возвратно-поступательное движущихся масс. Суммарное усилие по оси цилиндра, действующее на поршневой палец (кН):

Рå = Рг + Рj , (63)

где Рг - силы давления газов, кН;

Рj - силы инерции возвратно-поступательно движущихся масс. Силы давления газов определяются (кН):

, (64)

где px - текущее значение давления по индикаторной диаграмме, МПа;

D - диаметр цилиндра, м.

Для облегчения определения РΣ и дальнейшего динамического расчета КШМ свернутую индикаторную диаграмму в координатах p, V преобразуем в развернутую диаграмму в координатах pг , a.

Построение развернутой индикаторной диаграммы рекомендуется производить с использованием приближенного уравнения для перемещения поршня относительно верхней мертвой точки:

Sx = R ((1+l/4)-(COSj+(l/4COS2j)) , (65)

где l= R/Lш - кинематический параметр КШМ (принимаем по прототипу двигателя).

Решая уравнение (82) для разных j , определяем соответствующие им Sx.

Причем достаточно произвести расчет для j =(0..180), так как Sx является симметричной функцией относительно точки j=1800 и имеет период 3600.

Полученные результаты заносим в таблицу 5. Отрезки по вертикали из точек Sx, соответствующих определенным j до пересечения с кривыми свернутой индикаторной диаграммы в масштабе mp указывают текущее значение px.По выражению (81) определяем Рг, используя полученные значения px.

Таблица 5. Результаты расчетов для построения развернутой индикаторной диаграммы

j,

град

впус0-20406080100120140160180
сжат360-340320300280260240220200-
расш370380400420440460480500520540
выпВместе с этим смотрят:


Автоматизированная система оперативного управления перевозками


Автоматика и автоматизация на железнодорожном транспорте


Автомобильные дизельные топлива


Автомобильные эксплуатационные материалы


Автомобильный кран