Радиоприемное устройство для приема сигналов типа F3EH

1. Выбор и обоснование технических требований к устройству

2. Выбор и расчет структурной схемы РПрУ

2.1 Определение ширины полосы пропускания ВЧ тракта

2.2 Разбивка рабочего диапазона на поддиапазоны

2.3 Расчет параметров АРУ

2.4 Выбор транзисторов и расчет их параметров

2.5 Выбор промежуточной частоты

2.6 Определение типа, параметров и числа избирательных систем настроенных на частоту принимаемого сигнала

2.7 Определение типа, параметров и числа избирательных систем настроенных на промежуточную частоту

2.8 Выбор числа и типов усилительных каскадов

2.9 Анализ предварительного расчета

3. Электрический расчет

3.1 Расчет одноконтурной входной цепи в режиме удлинения

3.2 Расчет усилителя радиочастоты

3.3 Расчет преобразователя частоты

3.4 Расчет тракта промежуточной частоты

3.5 Расчет частотного детектора

3.6 Пасчет системы АРУ

Ва3.7Расчет стереодекодера

3.8 Расчет системы частотной автоподстройки частоты

3.9 Конструктивный расчет


Введение

Радиоприемное устройство состоит из приемной антенны, радиоприемника и оконечного устройства предназначенного для воспроизведения сигналов. Радиоприемники можно классифицировать по ряду признаков, из которых основными являются: тип схемы, вид принимаемых сигналов, назначение приемника, диапазон частот, вид активных элементов, используемых в приемника, тип конструкции приемника.

По типу схем различают приемники детекторные, прямого усиления (без регенерации и с регенерацией), схерхрегенеративные и супергетеродинные приемники, обладающие существенными преимуществами перед приемниками других типов и широко применяемые на всех диапазонах приемников.

Принимаемые сигналы служат для передачи сообщений или измерения положения и параметров относительного движения объектов. Сигналы могут передавать сообщения от одного источника или нескольких. Для передачи информации используется изменение одного из параметров сигнала по закону изменения информационного сигнала. Используются: непрерывные колебания с изменяемой (модулированной) амплитудой, частотой или фазой; колебания, скачкообразно изменяемые (манипулированные) по амплитуде, частоте, или разности фаз; колебания с изменяемой амплитудой, частотой или фазой, которые обусловлены видеоимпульсами с амплитудной, широтной, временной, или дельта-модуляцией, а также кодовыми группами видеоимпульсов.

По назначению различают приемники связные, радиовещательные, телевизионные, радиорелейных и телеметрических линий, радиолокационные, радионавигационные и другие. Связные радиоприемники чаще всего служат для приема одноканальных непрерывных сигналов с АМ (с несущей и боковыми полосами), ОБП (однополосной) и ЧМ или дискретных сигналов с амплитудной манипуляцией, частотной или фазовой. Радиовещательные приемники (монофонические) принимают одноканальные непрерывные сигналы с АМ на длинных, средних и коротких волнах и с ЧМ на ультракоротких волнах. Приемники черно-белых телевизионных программ принимают непрерывные сигналы с АМ и частичным подавлением одной боковой полосы частот и звуковые сигналы с ЧМ. Приемники цветных телевизионных программ принимают также сигналы, создающие цветное изображение. Приемники оконечных станций радиорелейных и телеметрических линий обычно предназначены для приема и разделения каналов многоканальнальных сигналов с частотным и временным уплотнением.

Приемники промежуточных станций радиорелейных линий (наземных и спутниковых) отличаются от приемников оконечных станций тем, что в них не происходит разделения многоканальных сигналов.

Импульсные радиолокационные приемо-передающие станции обычно излучают зондирующие радиоимпульсы с фиксированными периодами следования, длительностью импульсов, амплитудой и несущей частотой. Приемники таких станций служат для приема части энергии зондирующих сигналов, отраженной от целей. Отраженные сигналы могут быть импульсными или непрерывными, причем информация о целях может содержаться в изменении во времени амплитуды (или отношения амплитуд) и частоты (или спектре) сигналов.

Согласно рекомендации МККР (Международного консультативного комитета по радио) спектр радиосвязи делится на диапазоны. Наиболее широко распространенные приемники работают в диапазоне 30кГц тАУ 300ГГц (на волнах 10км тАУ 1мм).

В качестве активных элементов каскадов приемников, работающих на частотах 30кГц тАУ 300МГц, используются полупроводниковые приборы и электронные лампы. Предпочтение отдается полупроводниковым приборам благодаря их преимуществам (малые габаритные размеры и масса; низкие напряжения и токи питания; большой срок службы и механическая прочность). Состояние отечественной полупроводниковой и радиоприемной техники позволяет успешно преодолеть недостатки транзисторов (большой разброс и зависимость параметров от частоты, режима и температуры; низкие входные и выходные сопротивления; наличие внутренней обратной связи) и использовать их во всех каскадах приемников упомянутого диапазона без ухудшения работы приемников. Лампы применяются лишь в некоторых специальных приемниках и на более высоких частотах.

Приемники конструктивно выполняются из отдельных (навесных) активных и пассивных элементов с печатным или объемным монтажом или из готовых интегральных микросхем, представляющих собой каскады, узлы приемников и даже целые приемники.

Проектирование радиоприемников выполняется согласно техническому заданию. Обычно в техническом задании указываются: общие требования, требования к электрических характеристикам (диапазон принимаемых частот, чувствительность, избирательность, качество воспроизведения сигналов, определяемое частотными, нелинейными и фазовыми искажениями, а также искажениями импульсных сигналов; данные входов и выходов радиоприемника; параметры ручных и автоматических регулировок; излучение напряжения гетеродина в антенну, которое характеризует электромагнитную совместимость и так далее), конструктивные, механические, климатические, экономические, эксплуатационные требования (надежность). Приводится также методика измерения электрических характеристик, климатических и механических испытаний.


1. Выбор и обоснование технических требований к устройсву.

F тАУ излучение с частотной модуляцией

3 тАУ один канал аналоговой информации

Е тАУ телефония (включая звуковое вещание)

Н тАУ звук радиовещательного качества (стереофонический или квадрофонический).

Реальная чувствительность тАУ 25 мкВ.

Избирательность по соседнему каналу тАУ 90 дБ.

Избирательность по зеркальному каналу тАУ 50 дБ.

Коэффициент регулирования АРУ тАУ 60 дБ.

По данным коэффициента регулирования g выберем параметры АРУ а и р, где

(дБ)ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа (1.1)

(дБ)ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа (1.2)

(дБ)ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа (1.3)

Выберем а=70дБ, тогда по формуле (3) р=10дБ.

Частотная модуляция используется как правило при передаче сигнала на УКВ. Исходя из этого возьмем для расчета диапазон УКВ с частотами [65.8 - 108] МГц.

ГОСТ накладывает требования к стереосигналу, они приведены в таблице:

Диапазон воспроизводимых частот, Гц31,5тАж 15000
Частота поднесущей, кГцВа31,25
Коэффициент подавления несущейВа5
Переходной затухание между стереоканалами, дБВа>30
Полоса частот, занимаемая передачей в эфире, кГцВа190
Минимально допустимая ширина полосы пропускания , кГцВа165
Ухудшение шумовых свойств по сравнению с моноприемом, дБВа25
Возможность использования в телевиденииВаЕсть

Таб. 1.

Примечание: Характеристики даны при девиации несущей +(-)50кГц.

Такие параметры, как: мах модулирующая частота, полоса частот, занимаемая радиосигналом в эфире принимаем из таб.1.

Исходя из приведенных данных получаем технические требования к устройству.


2. Выбор и расчет структурной схемы РПрУ.

Проектирование приемника осуществляют по техническому заданию, в котором отражены его основные показатели. Однако в техническом задании отсутствует ряд требований, относящихся к отдельным каскадам и цепям приемника. Эти дополнительные требования можно получить на основе предварительного расчета, которому должен предшествовать выбор транзисторов.

При выборе структурной схемы нашего приемника будем основываться на требованиях задания по курсовому проектированию и требованиям ГОСТов.

Структурные схемы приемников различаются построением тракта радиочастоты, в котором может осуществляться прямое усиление входных сигналов и усиление их с преобразованием частоты.

В приемниках прямого усиления тракт радиочастоты содержит входную цепь (ВЦ) и усилитель поступающего с антенны радиосигнала тАУ так называемый усилитель радиосигнала (УРС). В этом случае все резонансные цепи настроены на частоту принимаемого радиосигнала, на которой и осуществляется усиление. Входная цепь обеспечивает предварительную частотную селекцию до первого каскада УРС, а сам УРС тАУ основную частотную селекцию и додетекторное усиление сигналов. Резонансные контуры ВЦ и УРЧ перестраиваются в пределах нужного диапазона рабочих частот. Так как обычно необходимы высокая избирательность и усиление, то может потребоваться несколько усилительных каскадов и резонансных контуров. Из-за конструктивной сложности реализации перестройки число контуров редко превышает 3..4. При этом усиление на радиочастоте может оказаться неустойчивым, а селективность недостаточной.

Для уменьшения числа усилительных каскадов и упрощения конструкции в тракте радиочастоты приемников прямого усиления используются регенеративные и суперрегенеративные усилители. В приемнике с регенеративным усилителем за счет положительной обратной связи в резонансный контур вносится отрицательное сопротивление, частично компенсирующее потери в нем, что увеличивает коэффициент усиления. Однако такие приемники обладают невысокой устойчивостью, так как работают в режиме близком к самовозбуждению. При этом возможно проникновение генерируемых колебаний в антенну, а их излучение ведет к усилению помех другим приемником, что крайне нежелательно с точки зрения электромагнитной совместимости.

В суперрегенеративном приемнике положительная обратная связь с УРС периодически изменяется с некоторой вспомогательной частотой, значительно превышающей частоту модуляции сигнала. Суперрегенеративному приемнику, как и регенеративному, свойственны искажения сигналов и интенсивные паразитные излучения, что не отвечает требованиям электромагнитной совместимости. Их достоинством является малая мощность источников питания при минимальных размерах и массе. Поэтому подобная структура используется для портативных приемников, допускающих большой уровень искажений.

Наибольшее распространение для подавляющего большинства радиосистем различного назначения получила супергетеродинная структура приемника с одно- или многократным преобразованием частоты (рис.2.1).

Часть приемника тАУ преселектор, включающий ВЦ и УРС, подобен структуре приемника прямого усиления и обеспечивает чувствительность и предварительную селекцию по частоте. С выхода преселектора напряжение сигналов и помех поступает на преобразователь частоты (ПЧ), где происходит изменение несущей частоты сигнала



Рис.2.1. Структурная схема приемника супергетеродинного типа

Для этого сигнал и колебания местного генератора - гетеродина (Г) одновременно воздействуют на смеситель (См), представляющий собой нелинейный или параметрический элемент.

В результате на выходе смесителя возникает колебание, содержащие

составляющие с частотой сигнала Ваи его гармоник, гетеродина и его гармоник и большое число комбинационных составляющих с частотами (,m=0,1,2..- целые числа). Одна из этих комбинационных частот и используется в качестве новой несущей частоты выходного сигнала, называется промежуточной частотой:

Ва(2.1)

Поскольку сигнал несет в себе полезную информацию, в процессе преобразования частоты эта информация должна сохраняться, то есть ПЧ должен быть линейным. Таким образом, в процессе преобразования частоты происходит перенос спектра сигнала в область промежуточной частоты без нарушения амплитудных и фазовых соотношений его составляющих. Частотно-избирательные блоки, расположенные за смесителем, настроены на частоту Ваи называются усилителями сигналов промежуточной частоты (УСПЧ). Промежуточная частота Вавсегда фиксирована, не зависит от частоты принимаемого сигнала Ваи выбирается намного ниже частоты сигнала. Поэтому на частоте Валегко обеспечить требуемое устойчивое усиление. Так как УСПЧ не перестраивается по частоте, то это позволяет получить в супергетеродинном приемнике высокую частотную избирательность при неизменной полосе пропускания, а также реализовать оптимальную фильтрацию сигнала от помех, применяя согласованные фильтры на промежуточной частоте. Таким образом, в супергетеродинном приемнике устраняются основные недостатки приемника прямого усиления.

Наиболее часто, ввиду своих достоинств, применяется супергетеродинная схема.

Разрабатываемый приемник работает в диапазоне УКВ, с частотной модуляцией.

2.1. Определение ширины полосы пропускания ВЧ тракта.

Полоса пропускания высокочастотного тракта без системы АПЧ определяется формулой:

,ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа (2.2)

где ВаВа Ва- ширина спектра принимаемого сигнала, Dfсп=190 кГц,

dс ,dгВа - относительная нестабильность несущей частоты сигнала dс=0 и частоты гетеродина,dг=10-3(гетеродина по схеме с общим эмиттером, без кварцевой стабилизации),

dпр=10-3, относительная нестабильность собственной частоты контуров тракта ПЧ приемника,

dн=10-3, относительная погрешность установки при беспоисковой настройке,

Fд мах=0, мах доплеровский сдвиг частоты (считаем приемник не передвигается с большой скоростью).

Fпр=10.7 МГц, промежуточная частота. Она будет определена и выбрана ниже, также будет доказано, что достаточно одного преобразователя частоты для обеспечения требований связанных с избирательностью по зеркальному каналу.

Подставляя приведенные данные в (4) получим,

ПfВ»400кГц

Для решения вопроса о необходимости применения АПЧ вводим коэффициент расширения полосы пропускания:

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа (2.3)

Так как , то целесообразно применение системы АПЧ. В этом случае необходимую полосу пропускания приемника находим по следующей формуле:

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа (2.4)

где КЧАП тАУ коэффициент подстройки системы ЧАП, КЧАП=15,

2.2 разбивка рабочего диапазона на поддиапазоны

Выбор способа разбивки диапазона частот приемника на поддиапазоны определяется следующими факторами:

А) классом приемника, назначением, условиями экспулатации;

Б) диапазоном рабочих частот и способом перестройки приемника поддиапазоне;

В) видом системы установки и индикации частоты настройки.

В целях унификации аппаратуры примем предопределенные решением ГКРЧ от 27.06.95 Протокола №6 поддиапазоны принимаемых частот таб.1. На вопрос о практической реализуемости КД=1.22, с помощью варикапов можно обеспечить КД порядка 1.2 тАУ 1.6.

Название поддиапазона

Диапазон частот, МГц

КД

УКВ-1

65.8 тАУ 741.109
УКВ-288 тАУ 1081.22

Таб.1

2.3 Расчет параметров АРУ

Принимаем схему АРУ, в которой регулировка усиления производится путем изменения тока эмиттера.

Принимаем степень изменения коэффициента усиления одного регулируемого каскада Л=10 раз.

Требуемое изменение коэффициента усиления приемника под действием АРУ нам задано Лм=60 дБ

Необходимое число регулируемых каскадов

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа (2.5)

Количество регулируемых каскадов принимаем равным 3.

2.4 Выбор транзисторов и расчет их параметров

Выбор транзисторов для высокочастотного тракта приемника необходимо производить из следующих соображений:

1) превышение предельной частоты усиления fг в несколько раз (5 - 10) по сравнению с максимальной рабочей частотой транзистора в данной конструкции:

2) наличие параметров обеспечивающих выполнение заданных требований;

3) минимальная стоимость.

В качестве усилительного элемента пригоден транзистор КТ399, его параметры приведены в таб.2.

Ск, пФ

tк, пс

h21э

fг,ГГц

Uэрли

Кш,дБ

1.781001.81002

Таб.2.

Выбираем режим работы транзистора, при котором Ik=3.5мА, при данном значении оптимальный коэффициент шума.

Дифференциальное сопротивление базы

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа (2.6)

Входное сопротивление БТ по схеме с ОБ

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа (2.7)

Определяем активные и реактивные составляющие Y параметров на частоте fmax=108 МГц.

Для этого предварительно находим вспомогательные коэффициенты

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа (2.8)

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа (2.9)

ВаВаВаВаВаВаВаВа ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.10)

Выходная полная проводимость в режиме полного сигнала (в схеме с ОБ)

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.11)

Активная составляющая выходной полной проводимости Y22

ВаВаВаВаВаВаВаВа Ва(2.12)

Полная проводимость прямой передачи

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.13)

где jк=0.26 мВ тАУ температурный потенциал.

Поскольку транзистор работает с большим запасом по частоте, то за коэффициент усиления на рабочей частоте можно принять , докажем это

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.14)


Выходная емкость

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.15)

Полная проводимость обратной передачи

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.16)

Емкость обратной связи

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.17)

Поскольку транзистор работает с большим запасом по частоте, то входную емкость определим по формуле

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.18)

Расчет параметров на ПЧ производим по формулам 2.8 тАУ 2.18, результаты расчета приведены ниже.

В параметры транзистора в режиме преобразования

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.19)

ВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.21)

ВаВаВаВаВаВа Ва(2.22)

2.5 Выбор промежуточной частоты

Величина промежуточной частоты (ПЧ) выбирается из следующих соображений:

1) ПЧ не должна находиться в диапазоне частот приемника или близко от границ этого диапазона;

2) ПЧ не должна совпадать с частотой какого либо мощного передатчика;

3) ВаДля получения хорошей фильтрации ПЧ на выходе детектора должно выполняться следующее условие:

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.23)

4) С увеличением fпр:

- увеличивается избирательность по зеркальному каналу (ЗК);

- уменьшается избирательность по соседнему каналу (СК);

- уменьшаются входное и выходное сопротивление электронных приборов, что приводит к шунтированию контуров, а также понижается крутизна характеристики транзисторов;

- ухудшается устойчивость УПЧ;

- уменьшается вредное влияние шумов гетеродина на чувствительность приемника;

- облегчается разделение трактов ПЧ и НЧ;

- увеличивается надежность работы АПЧ и так далее.

С уменьшением fпч свойства описанные в п. 4, становятся диаметрально противоположными.

Применение двукратного преобразования частоты позволяет использовать достоинства высокой и низкой ПЧ, однако при этом происходит значительное усложнение схемы.

Исходя из выше сказанного, выбираем схему с однократным преобразованием частоты, причем ПЧ ниже минимальной частоты принимаемого сигнала тАУ нижнее преобразование.

МСЭ тАУ Р рекомендуются несколько значений fпр, нам подходит одна из них fпр=10.7МГц, докажем это.

Наихудшая избирательность по зеркальному каналу будет на верхней частоте диапазона поэтому произведем доказательство только для нее.

Реализация схемы с одним преобразованием частоты возможна при выполнении условия

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.24)

Оно выполняется 526.829<3229

Выбираем fпч исходя из следующего условия:

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.25) где

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.26)

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.27)

Исходя из полученного и получаем fпч=10.7 (МГц)

2.6 Определение типа, параметров и числа избирательных систем настроенных на частоту принимаемого сигнала

В приемниках супергетеродинного типа ТРЧ обеспечивает:

- избирательность по ЗК;

- избирательность по ПЧ;

- ослабление помех станций способных вызвать появление в преобразователе перекрестной модуляции

Определяем максимально допустимую добротность контуров, обеспечивающую заданное ослабление на краях полосы пропускания

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.28)

где fтАЩmin- минимальная частота поддиапазона, кГц;

П тАУ ширина полосы пропускания, кГц;

nc тАУ число одиночных избирательных систем настроенных на частоту принимаемого сигнала, возьмем nc=2;

sП тАУ ослабление на краях полосы пропускания, sП=2 (6дБ).

Необходимая добротность Qи обеспечивающая заданную избирательность по зеркальному каналу при применении индуктивной связи с антенной


ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.29)

где ВаВа fзмах=fтАЩmax-2fпр тАУ максимальная частота зеркального канала;

fтАЩmax тАУ максимальная частота поддиапазона, кГц;

fпр тАУ промежуточная частота, кГц;

sз тАУ избирательность по зеркальному каналу, sз=316.22;

Возможная эквивалентная конструктивная добротность контура (с учетом шунтирования контура транзистором y=0.8)

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.30)

гдеВаВаВа Qk тАУ конструктивная добротность контура, Qk=150.

Проверяем выполнение условия:

Из полученных ранее значений видно, что оно выполняется, в этом случае примем эквивалентную добротность контура немного больше Qu. Принимаем число контуров nc=2 (одноконтурная входная цепь и резонансный УРЧ), и эквивалентное качество контура Qэмах=65 (на максимальной частоте поддиапазона), при этом обеспечивается требуемое ослабление на краях полосы пропускания и избирательность по ЗК лутше заданной.

Находим эквивалентную добротность контура на нижней частоте поддиапазона.


ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.31)

Так как Qэmin=83.48П=338 расчет произведен верно и окончательно принимаем: nc=2; Qэmax=65; Qэmin=83.48.

Для крайних точек поддиапазона fтАЩmin, fтАЩmaxопределяем:

a) вспомогательные коэффициенты:

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.32)

где Δfс тАУ растройка, прн которой задана избирательность по соседнему каналу, Δfс=300кГц.

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.33)

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.34)

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.35)

б) зеркальные частоты

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.36)

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.37)

в) избирательность по соседнему каналу на максимальной частоте

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.38)

на минимальной частоте

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.39)

г) ослабление на краях полосы

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.40)

ВаВаВаВаВаВаВаВаВаВа Ва(2.41)

д) избирательность по зеркальному каналу

Ва(2.42)

ВаВа Ва(2.43)

Так как σз min=69.72> σз max=56.62> σз=50 дБ, исходные данные выполнены.

е) избирательность по промежуточной частоте

ВаВаВа Ва(2.44)

2.7 определение типа и числа избирательных систем настроенных на промежуточную частоту

Избирательность по соседним каналам в основном реализуется в тракте промежуточной частоты, с помощью сложных избирательных систем. В качестве избирательных систем в ТПЧ будем применять пьезокерамические фильтры (ПКФ) типа ФП1П-049Б (полоса пропускания по уровню 6дБ тАУ (200-280)кГц), обладающие по сравнению с ФСС следующими достоинствами:

- малая критичность к изменению нагрузочных сопротивлений позволяет подключать их к базе транзисторов непосредственно;

- постоянство ЧХ;

- небольшие размеры, вес;

- технологичность изготовления.

Определим ослабление на краях полосы пропускания σпу и избирательность по соседнему каналу σ, которые должен обеспечить ТПЧ:

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.45)

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.46)

где σп и σс тАУ ослабление и избирательность, заданная для ВЧ тракта приемника;

σпmax, σcmin тАУ ослабление на краях полосы пропускания и избирательность по соседнему каналу ТПЧ в наихудших точках всех поддиапазонов приемника.

Поскольку фильтр ФП1П-049Б обеспечивает избирательность 26дБ, то для получения требуемой селекции СК будем использовать 3 таких фильтра. Общая избирательность 72 дБ. Недостающие 16 дБ способны дать широкополосные колебательные контура согласующие преобразователь частоты и ПКФ, УПЧ и ПКФ.

Определяем требования по избирательности σсш и ослабление на краях полосы пропускания σпш для широкополосного контура

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.47)

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа ВаВаВаВаВаВаВаВаВа Ва(2.48)

где σфп=4дБ тАУ ослабление на краях полосы пропускания ПКФ;

σфс=72дБ тАУ избирательность по соседнему каналу обеспечиваемая ПКФ.

Допустимая добротность контуров обеспечивающая заданное ослабление на краях полосы пропускания

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.49)

Необходимая добротность

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.50)

Возможную эквивалентную добротность определим по формуле (2.30), приняв Qk=75, Ψ=0.17

Эквивалентную добротность контура принимаем равной Qэквmax=50 (чтобы выполнялось условие ).

Находим вспомогательные коэффициенты

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.52)

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.53)


Избирательность по соседнему каналу

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.54)

Ослабление на краях полосы пропускания

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.55)

Ослабление на краях полосы пропускания ВЧ тракта приемника

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.56)

Избирательность по соседнему каналу

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.57)

2.8 Выбор числа и типов усилительных каскадов

Определим требования к коэффициенту шума первого усилительного каскада преселектора, остальными мы пренебрегаем виду малого оказываемого ими влияния.

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.58)

где - входное отношение сигнал помеха, его нужно иметь таким для обеспечения работы частотного детектора в надпороговом режиме и получения выигрыша;

Е тАУ реальная чувствительность заданная в единицах напряженности вТЗ;

К=1.38В·10-23 Дж/град тАУ постоянная Больцмана;

ПшВ»1.1В·П=225.5кГц тАУ шумовая полоса линейного тракта;

Т0=293 К тАУ стандартная температура приемника;

RAВ»50 Om;

EП=1мкВ/м тАУ средний уровень помех днем;

Из справочника по графикам для КТ399 находим Кш@ 0.1(дБ)=1.012.

Требуемое усиление линейного тракта находим как

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.59)

где Uупч=0.1 В, напряжение на выходе последнего каскада УПЧ;

Еа=25мкВ/м тАУ заданная по ТЗ чувствительность;

hд тАУ действующая высота антенны, находится по формуле для несимметричного вибратора

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.60)

где l=4.68 м тАУ длинна волны сигнала;

l=1 м тАУ длинна телескопической антенны.

Поскольку коэффициент усиления каскада, с точки зрения устойчивой работы, не может быть больше устойчивого коэффициента усиления, то коэффициент усиления каскада примем равным устойчивому коэффициенту усиления на максимальной рабочей частоте.

При использовании транзистора КТ399, он нам подходит по коэффициенту шума, в УРЧ его коэффициент усиления составит

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа Ва(2.61)

где S тАУ крутизна ВАХ, мА/В;

fтАЩmax тАУ максимальная рабочая частота, МГц;

Ск тАУ емкость перехода коллектор-база, пФ.

Коэффициент усиления ПЧ рассчитываем по (2.61).

Для каскада УПЧ коэффициент усиления так же рассчитываем по (2.61).

Общее усиление до детектора

ВаВаВаВа Ва(2.62)

где Квц=0.5 тАУ коэффициент передачи входной цепи;

nурч=1, nупч=3 тАУ количество каскадов в УРЧ и УПЧ соответственно, для начала зададимся приведенными цифрами.

Поскольку К0minобщ, то расчет произведен верно и принимается схема с одним УРЧ и тремя УПЧ.

Коэффициент усиления выбран с запасом по следующим причинам:

1. Уменьшение коэффициента усиления в результате старения элементов;

2. В предварительном расчете не учитывались затухания вносимые избирательными системами, стоящими в тракте ПЧ;

3. Уменьшения напряжения источника питания питания в результате эксплуатации;

4. Необходимость учесть расстройку контуров.


2.9 Анализ предварительного расчета

На основании предварительного расчета составляем структурную схему рис.2.2. Результаты расчета сведены в таб.3, там же приведены параметры которые должен обеспечить приемник.

GPS-навигация


GPS-прийомник авиационный


IP-телефония и видеосвязь


IP-телефония. Особенности цифровой офисной связи


Unix-подобные системы