Радиоприемные устройства
Радиоприемные устройства входят в состав радиотехнических систем связи, т.е. системВа передачи информации с помощью электромагнитных волн
Радиоприемное устройство состоит из приемной антенны, радиоприемника и оконечного устройства предназначенного для воспроизведения сигналов. Радиоприемники можно классифицировать по ряду признаков, из которых основными являются: тип схемы, вид принимаемых сигналов, назначение приемника, диапазон частот, вид активных элементов, используемых в приемнике, тип конструкции приемника.
По типу схем различают приемники детекторные, прямого усиления (без регенерации и с регенерацией), сверхрегенеративные и супергетеродинные приемники, обладающие существенными преимуществами перед приемниками других типов и широко применяемые на всех диапазонах приемников.
Принимаемые сигналы служат для передачи сообщений или измерения положения и параметров относительного движения объектов. Сигналы могут передавать сообщения от одного источника или нескольких. Для передачи информации используется изменение одного из параметров сигнала по закону изменения информационного сигнала. Используются: непрерывные колебания с изменяемой (модулированной) амплитудой, частотой или фазой; колебания, скачкообразно изменяемые (манипулированные) по амплитуде, частоте, или разности фаз; колебания с изменяемой амплитудой, частотой или фазой, которые обусловлены видеоимпульсами с амплитудной, широтной, временной, или дельта-модуляцией, а также кодовыми группами видеоимпульсов.
По назначению различают приемники связные, радиовещательные, телевизионные, радиорелейных и телеметрических линий, радиолокационные, радионавигационные и другие. Связные радиоприемники чаще всего служат для приема одноканальных непрерывных сигналов с АМ (с несущей и боковыми полосами), ОБП (однополосной) и ЧМ или дискретных сигналов с амплитудной манипуляцией, частотной или фазовой. Радиовещательные приемники (монофонические) принимают одноканальные непрерывные сигналы с АМ на длинных, средних и коротких волнах и с ЧМ на ультракоротких волнах. Приемники черно-белых телевизионных программ принимают непрерывные сигналы с АМ и частичным подавлением одной боковой полосы частот и звуковые сигналы с ЧМ. Приемники цветных телевизионных программ принимают также сигналы, создающие цветное изображение. Приемники оконечных станций радиорелейных и телеметрических линий обычно предназначены для приема и разделения каналов многоканальных сигналов с частотным и временным уплотнением.
Приемники промежуточных станций радиорелейных линий (наземных и спутниковых) отличаются от приемников оконечных станций тем, что в них не происходит разделения многоканальных сигналов.
Импульсные радиолокационные приемо-передающие станции обычно излучают зондирующие радиоимпульсы с фиксированными периодами следования, длительностью импульсов, амплитудой и несущей частотой. Приемники таких станций служат для приема части энергии зондирующих сигналов, отраженной от целей. Отраженные сигналы могут быть импульсными или непрерывными, причем информация о целях может содержаться в изменении во времени амплитуды (или отношения амплитуд) и частоты (или спектре) сигналов.
Согласно рекомендации МККР (Международного консультативного комитета по радио) спектр радиосвязи делится на диапазоны. Наиболее широко распространенные приемники работают в диапазоне 30 кГц - 300 ГГц (на волнах 10 км - 1мм).
В качестве активных элементов каскадов приемников, работающих на частотах 30 кГц - 300 МГц, используются полупроводниковые приборы и электронные лампы. Предпочтение отдается полупроводниковым приборам благодаря их преимуществам (малые габаритные размеры и масса; низкие напряжения и токи питания; большой срок службы и механическая прочность).
Приемники конструктивно выполняются из отдельных (навесных) активных и пассивных элементов с печатным или объемным монтажом или из готовых интегральных микросхем, представляющих собой каскады, узлы приемников и даже целые приемники.
1. ОБОСНОВАНИЕ ТРЕБОВАНИЙ ТЗ
ВаВаВаВаВаВаВаВаВа Техническим заданием задан следующий тип сигнала L8AJT:
7. L тАУ Ваизлучение с модуляцией по ширине;
8. 8 тАУ два и более канал Ваинформации;
9. A тАУ телеграф Вадля слухового приема;
10. J тАУ Вазвук коммерческого качества
11. T тАУ временное уплотнение
ВаВаВаВаВаВаВаВаВа Другие данные заданные ТЗ:
В· Реальная чувствительность - 100 мкВ;
В· Избирательность по соседнему каналу - 50 дБ;
В· Избирательность по зеркальному каналу - 90 дБ;
В· Коэффициент регулирования АРУ - 85 дБ.
После того, как определен тип модуляции сигнала, следует выбрать диапазон принимаемых частот и рассчитать полосу сигнала. Современные приёмники с ШИМ сигналов работают в диапазонах КВ и УКВ. Поскольку данный приемник является стационарным устройством, выбираем из рекомендованных МККР диапазонов для стационарного КВ приёмника диапазон (4.438 тАУ 4.650) МГц. Данный диапазон обеспечивает дальность приёма днём до 600 км, ночью тАУ до 3000 км. Следует отметить, что дальность практически не зависит от солнечной активности.
2. РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ
Структурные схемы приемников различаются построением тракта радиочастоты, в котором может осуществляться прямое усиление входных сигналов и усиление их с преобразованием частоты.
В приемниках прямого усиления тракт радиочастоты содержит входную цепь (ВЦ) и усилитель поступающего с антенны радиосигнала тАУ так называемый усилитель радиосигнала (УРС). В этом случае все избирательные цепи настроены на частоту принимаемого радиосигнала, на которойВа осуществляется усиление. Входная цепь обеспечивает предварительную частотную селекцию до первого каскада УРС, а сам УРС тАУ основную частотную селекцию и детекторное усиление сигналов. Так как обычно необходимы высокая избирательность и усиление, то может потребоваться несколько усилительных каскадов и резонансных контуров. Из-за конструктивной сложности реализации перестройки число контуров редко превышает 3..4. При этом усиление на радиочастоте может оказаться неустойчивым, а селективность недостаточной.
Наибольшее распространение для подавляющего большинства радиосистем различного назначения получила супергетеродинная структура приемника с одно- или многократным преобразованием частоты (Рисунок 1). Часть приемника тАУ преселектор, включающий ВЦ и УРС, подобен структуреВа приемника прямого усиления и обеспечивает чувствительность и предварительную селекцию по частоте. С выхода преселектора напряжение сигналов и помех поступает на преобразователь частоты (ПЧ), где происходит изменение несущей частоты сигнала
Рисунок 1. Структурная схема приемника супергетеродинного типа
Для этого сигнал и колебания местного генератора - гетеродина (Г) одновременно воздействуют на смеситель (См), представляющий собой нелинейный или параметрический элемент.
В результате на выходе смесителя возникает колебание, содержащие составляющие с частотой сигнала Ваи его гармоник, гетеродина Ваи его гармоник и большое число комбинационных составляющих с частотами ВаВа(n,m=0,1,2..- целые числа). Одна из этих комбинационных частотВаВа используется в качестве новой несущей частоты выходного сигнала и называется промежуточной частотой:
ВаВаВаВаВаВаВаВаВа (3.1)
Поскольку сигнал несет в себе полезную информацию, в процессе преобразования частоты эта информация должна сохраняться, то есть ПЧ должен быть линейным. Таким образом, в процессе преобразования частоты происходит перенос спектра сигнала в область промежуточной частоты без нарушения амплитудных и фазовых соотношений его составляющих. Частотно-избирательные блоки, расположенные за смесителем, настроены на частотуВа ВаВаи называются усилителями сигналов промежуточной частоты (УПЧ). Промежуточная частота Вавсегда фиксирована, не зависит от частоты принимаемого сигнала Ваи выбирается намного ниже частоты сигнала. Поэтому на частоте Валегко обеспечить требуемое устойчивое усиление. Так как УПЧ не перестраивается по частоте, то это позволяет получить в супергетеродинном приемнике высокую частотную избирательность при неизменной полосе пропускания, а также реализовать оптимальную фильтрацию сигнала от помех, применяя согласованные фильтры на промежуточной частоте.
Приемник многоканальных сигналов с временным уплотнением должен преобразовывать радиоимпульсы в видеоимпульсы; разделить видеоимпульсы, служащие для передачи сообщений по различным каналам, и преобразовать видеоимпульсы, следующие с тактовой частотой, в модулирующее напряжение. После линейного тракта радиоимпульсы промежуточной частоты поступают на входе Вадемодулятора (ДРИ), который в свою очередь преобразует их в видеоимпульсы. Т.е. Uпор ≥Uп ВаПри приеме сигналов с ШИМ в качестве ДРИ может выступать амплитудный детектор. Радиоимпульсы синхронизации также преобразуются ДРИ в видеоимпульсы. Они, как правило, отличаются большой длительностью, что позволяет с помощью интегратора (И) Ваи пороговой схемы (ПС) выделить их. Они поступают на ждущий мультивибратор (МВ), который при этом запускается и открывает каскад совпадения (КС), который пропускает соответствующий канал на время приема импульса. Срез импульса МВ1 запускает МВ2, который открывает следующий канал и т.д. Затем приходит следующий синхроимпульс и все повторяется. Для демодуляции сигналов с широтно-импульсной модуляцией (ШИМ) необходимо пропустить видеоимпульсы через ФНЧ с граничной частотой Fв, где 0.5Fи>Fв>Fmax. Для ослабления помех нужно использовать двухсторонний ограничитель (ДО) или электронное реле, которое будет перебрасываться во время прохождения напряжения через некоторое пороговое напряжение. Уровень ограничения следует выбрать из условия Uпор ≈ 0.5Uи, где Uи тАУ амплитуда видеоимпульсов. В этом случаи уровень ограничения попадает на участок наибольшей крутизны фронта импульсов, и действие помех станет минимальным. ДО необходимо включить между КС и ДРИ, тем самым уменьшая необходимое число активных элементов. В итоге структурная схема приемника будет выглядеть как показано на рисунке 2.
Рисунок 2. Структурная схема многоканального приемника с ШИМ и временным уплотнением.
При расчёте структурной схемы необходимо определить число преобразователей частоты, определить промежуточные частоты и частоты гетеродинов, к-ты передачи блоков УРС, ПЧ и УПЧ, чтобы обеспечить на выходе тюнера достаточный уровень сигнала для работы усилителя.
3. ПРЕДВАРИТЕЛЬНЫЙ РАiЁТ
3.1. Расчёт полосы пропускания
Расчёт полосы пропускания приёмника сигналов ШИМ можно вести как для обычного приёмника непрерывных сигналов с АМ, так как ширина спектра определяется верхней частотой информационного сообщения.
Исходные данные:
Fq = 200 тАУ 3000 Гц тАУ ширина спектра информационного сообщения
f0 = 4.565 Мгц тАУ частота несущей принимаемого сигнала
Расчёт числа преобразователей частоты:
НеобходимоВа проверить выполнение условия:
ВаВаВаВаВаВаВаВаВаВа (4.1.1)
где:
fc ВатАУВа частота несущей принимаемого сигнала тАУ fc = f0 = 4.5 МГц
Sзк тАУВа требуемая избирательность по зеркальному каналу, число раз 90дБ = 31622раз.
QВаВаВаВаВаВа тАУВа конструктивная добротность избирательных систем. Для LC контуров принимаем Q=100.
∆FВа тАУ ширина спектра информационного сообщения.
∆FВа = 2FmaxВа =6000ВаВаВаВаВа (4.1.2)
n тАУ число избирательных систем.
Покажем, что условие (4.1.1) выполняется для n =3 :
ВаВаВа (4.1.3)
Действительно 360.9кГц меньше 600кГц. Теперь, зная ширину спектра сигнала, можно определить промежуточную частоту (ПЧ). Причем мы не должны забывать об некоторых условиях, которые накладываются на ПЧ:
1) ПЧ не должна находиться в диапазоне частот приемника или близко от границ этого диапазона;
2) ПЧ не должна совпадать с частотой какого либо мощного передатчика;
Существует ряд стандартных значений ПЧ, причем нужно из этого ряда выбрать такую, которая будет попадать в диапазон между 360.9кГц и 600кГц
ВаВаВа (4.1.4)
В этот диапазон как раз попадает стандартное значение fпч = 465 кГц. Зная fпч, можно определить частоту гетеродина. Поскольку условие (4.1.1) выполнилось, то одного преобразования частоты будет достаточно. Следовательно, в схеме будет только один гетеродин и один преобразователь частоты. В качестве гетеродина используем цифровой синтезатор частоты со встроенной петлёй ЧАП. Это обеспечит высокую стабильность частоты (нестабильность частоты составит не более 10) и облегчит перестройку гетеродина.
Поскольку значение ПЧ меньше минимальной частоты диапазона, преобразование будет нижним, и частота гетеродина определится как:
ВаВаВаВаВаВаВаВаВа (4.1.5)
Подставляя значения в формулу (4.1.5), получим:
Ва4.565Мгц тАУ 0.465MГц = 4.1MГцВаВаВаВаВа (4.1.6)
Разработка структурной схемы закончена. Далее следует определить требуемое усиление, рассчитать полосу принимаемого сигнала.
Ниже приведены результаты разработки структурной схемы:
В· Диапазон принимаемых частот -Ва (4.438 тАУ 4.650) МГц
В· Промежуточная частота Fпч = 465кГц
В· Частота гетеродинаВа тАУ 4.1МГц
В· Число избирательных систем приселектора тАУ n = 2
3.2. Определение ширины полосы пропускания ВЧ тракта
Полоса пропускания высокочастотного тракта с системой ЧАП определяется формулой:
Ва Ва(4.2.1)
где:
Ва- ширина спектра принимаемого сигнала, Dfсп=6 кГц,
dс ,dгВа - относительная нестабильность несущей частоты сигнала dс=0 и частоты гетеродина,dг=10-6 (цифровой синтезатор с кварцевой стабилизацией)
dпр=10-3, относительная нестабильность собственной частоты контуров тракта ПЧ приемника,
dн=10-3, относительная погрешность установки при беспоисковой настройке,
Fд мах=0, доплеровский сдвиг частоты (приемник является стационарным устройством и доплеровский сдвиг не образуется).
Fпч= 465 кГц, промежуточная частота.Ва
КЧАП тАУ коэффициент подстройки системы ЧАП, КЧАП=15,
Необходимую полосу пропускания приемника находим, подставляя значения в формулу (4.2.1):
(4.2.2)
Ва= 7.2 кГц ВаВаВаВаВаВа (4.2.3)
Для расчётов также необходима эффективная шумовая полоса системы, рассчитываемая как
ВаВаВаВаВаВа (4.2.4)
Где 1.1 тАУ коэффициент расширения. Получим значение :
ВаВаВаВаВаВаВаВаВаВа (4.2.5)
3.3.Выбор числа усилительных каскадов
Определим требования к коэффициенту шума первого усилительного каскада преселектора, остальными мы пренебрегаем виду малого оказываемого ими влияния.
ВаВа ВаВаВаВаВаВаВаВаВа (4.2.5)
=16.96
где - входное отношение сигнал помеха, необходимое для нормальной работы схемы
Еа тАУ минимальное напряжение полезного сигнала в антенне
К=1.38В·10-23 Дж/град тАУ постоянная Больцмана;
ПшВ»1.1В·П=8кГц тАУ шумовая полоса линейного тракта;
Т0=293 К тАУ стандартная температура приемника;
RAВ»50 Om тАУ сопротивление антенны;
EП=1мкВ/м тАУ средний уровень помех днем;
Ва- действующая высота антенны, где Вадлина волны сигнала
Так как уровень помех превысил значение мин. значение сигнала в антенне, в схеме приемника необходим транзисторный УРС. Для облегчения производства и производственной унификации все блоки приёмника будем строить на транзисторах одной серии. Это позволит применять в усилительных каскадах однотипные схемы смещения, а также обеспечит согласование каскадов по шумам.
ВаВаВаВаВаВаВаВаВа Выберем по справочной литературе малошумящий биполярный pnp тАУ транзистор КТ 375Б, отечественного производства, обладающий следующими характеристиками:
Вместе с этим смотрят:
IP-телефония. Особенности цифровой офисной связи