Оборудование участка железной дороги устройствами автоблокировки
Транспорт обслуживает практически все виды продукции между производителями (поставщиками) и потребителями. Современное общество рассматривает роль транспорта, как всеобщее средство труда. Транспорт с одной стороны тАУ сегмент рынка "физически" реализующий обмен товарами и оказывающий услуги населению, а с другой тАУ он сам как субъект рынка продаёт свои услуги населению, перемещая товары и пассажиров. Перевозки выполняет в основном транспорт общего пользования тАУ водный, автомобильный, воздушный, железнодорожный, а также специальный транспорт.
Водный транспорт является неотъемлемой частью транспортной системы Казахстана. Эффективен при массовых перевозках нефти и нефтепродуктов, лесных и строительных материалов
Автомобильный транспорт обладает большой маневренностью. Груз может быть доставлен от места погрузки отправителя до склада получателя, минуя перегонные операции.
Воздушный транспорт тАУ это самый скоростной вид транспорта на большие расстояния.Себестоимость перевозок грузов на воздушном транспорте очень высока.
Трубопроводный транспорт по существу не соответствует общепринятому определению понятия "транспорт", здесь нет подвижного состава. Самая низкая себестоимость перевозок. По трубопроводам могут перекачивать только жидкие и газообразные грузы.
Железнодорожный транспорт наиболее приспособлен к массовым перевозкам. Функционирует днём и ночью, независимо от времени года и атмосферных условий. Сравнительно не высокая себестоимость перевозок грузов, высокая эффективность при перевозке грузов на большие и средние расстояния. На строительство железных дорог требуются большие капиталовложения, которые окупаются только значительной концентрации грузовых и пассажирских потоков.
Основной задачей железнодорожного транспорта является обеспечение на перегонах и станциях необходимой пропускной и провозной способности, перерабатывающей способности сортировочных и грузовых станций, сокращение времени оборота вагона, увеличение скорости грузовых и пассажирских поездов.[3]
Осуществление этих задач имеет огромное значение в дальнейшем развитии экономики, повышение материального и культурного уровня жизни народа.
Централизованное размещение аппаратуры дает возможность оперативно и быстро устранять возникшие неисправности.
Одним из важнейших направлений внедрения технического прогресса на железнодорожном транспорте является совершенствование и широкое применение современных технических средств управления движения поездов.
Высокая интенсивность использования технических средств железнодорожного транспорта обуславливает необходимость широкого внедрения достижений науки и техники и передовых методов труда. Решению поставленных задач во многом способствует внедрение современных средств автоматики и телемеханики.
При сравнительно небольших капитальных затратах устройства автоматики и телемеханики позволяют обеспечить пропускную и провозную способность линий, перерабатывающую способность станций, значительно увеличивают производительность и улучшают условия труда железнодорожников, повышают безопасность движения поездов.
Система автоматики телемеханики и связи представляет собой совокупность элементов, образующих цепь приёма, передачи, хранения, сравнения и преобразования информации в виде различных сигналов. Назначением этих устройств для железных дорог является увеличение скоростей грузовых и пассажирских поездов, улучшение экономических показателей работы железных дорог.
В настоящее время происходят не только количественные, но и качественные изменения устройств автоматики и телемеханики. В новых системах широко используются более надежные бесконтактные приборы, интегральные микросхемы, элементы вычислительной техники. Внедрение новых и совершенствование существующих средств автоматики и телемеханики являются основой для решения перспективной задачи тАУ комплексной автоматизации и механизации перевозочного процесса на железнодорожном транспорте
Целью дипломной работы является:
- систематизация, закрепление и расширение теоретических знаний полученных за время учёбы
- углубленое изучение студентом конкретных задач и вопросов в соответствии с темой дипломной работы.
- развитие у студента навыков самостоятельной работы при выполнении разрабатываемой темы[7]
В дипломной работе на основе исходных данных: полуавтоматической блокировки на перегоне, рода тяги тАУ электротяга переменного тока, двухпутный участк железной дороги, необходимо обосновать выбор системы автоматики и телемеханики на станциях заданного участка, на перегонах автоматическую систему управления движения поездов на участке.
В теоретической части необходимо разработать схематический и двухниточный план заданной станции, произвести необходимые инженерные расчеты и привести основные требования к разработке принципиальных схем системы автоматики и телемеханики на участке железной дороги.
В практической части разработаны основные принципиальные схемы системы АБТЦ с проходными светофорами на перегоне участка.
1. ПОСТАНОВКА ЗАДАЧИ
1.1 Характеристика существующих устройств автоматики и телемеханики на разрабатываемом участке
На двухпутном участке железной дороги длиной в 40 км и при автономной тяге продолжительное время эксплуатировалась система полуавтоматической блокировки (ПАБ) на перегонах и маршрутно-контрольные устройства на станциях.
При ПАБ на межстанционный перегон может быть отправлен только один поезд и поэтому интервал между поездами возрастает и определяется временем хода поезда по перегону. Для увеличения пропускной способности необходимо осуществить движение поездов в попутном направлении с минимальным интервалом.
ПАБ представляет собой систему сигнализации, связи и блокировки (iБ) между двумя раздельными пунктами при которой изменение показаний постоянных сигналов и подаче блокировочных сигналов о следовании поезда производится работниками движения и частично автоматически от воздействия на путевые приборы и рельсовые цепи (РЦ) движущимся поездом.
Общая схема однопутной релейной полуавтоматической блокировки (РПБ) типовая и состоит из следующих узлов: линейной цепи, связывающей соседние станции; цепи местных зависимостей, обеспечивающих связь линейных и станционных устройств; цепи станционных устройств.
В линейную цепь входят: линейные реле ЧЛ (НЛ) комбинированного типа, служащие для получения согласия на отправление поезда и извещения о его прибытии на соседнюю станцию; реле дачи прибытия ЧДП (НДП), извещающие о выходе поезда с соседней станции и подготавливающие схему станции приема к фиксации прибытия поезда.
Цепь местных зависимостей состоит: из реле дачи согласия ЧДС (НДС); маршрутных реле отправления ЧОМ (НОМ); противоповторных ЧОП (НОП) и вспомогательных ЧОВ (НОВ) реле отправления; реле прибытия поезда ЧП (НП).
Цепи станционных устройств включают в себя схемы управления сигналами, изолированными рельсами с педалями, маршрутными реле и другими.
Отправление поезда со станции отправления на перегон возможно лишь после получения согласия от станции приема. После приготовления маршрута отправления на станции отправления открывается выходной светофор с посылкой блокировочного сигнала "Путевое отправление". После приема поезда посылается блокировочный сигнал "Путевое прибытие" на станции приема.[1]
В полуавтоматической блокировке необходимы устройства, контролирующие проследование поездов и осуществляющие при приеме и отправлении закрытие за ними входных и выходных светофоров. До недавнего времени, в основном, применялись устройства, работающие от воздействия поезда на изолированный рельс и механическую педаль.
Однако по мере увеличения скорости, размеров движения, веса локомотивов и вагонов увеличивалось и количество отказов в работе педалей. Для повышения надежности действия ПАБ стали применять беспедальные схемы, основанные на воздействии поезда на рельсовые цепи.
В беспедальную схему, как правило, входят две нормально разомкнутые или нормально замкнутые рельсовые цепи. Нормально замкнутые рельсовые цепи применяют в тех случаях, когда они необходимы для основных станционных устройств автоматики. В остальных случаях применяют разомкнутые рельсовые цепи.[8]
Устройства, контролирующие проследование поездов, не позволяет контролировать прибытие поезда в полном составе и фактическое освобождение перегона. Для устранения этого недостатка применяют различные средства: сплошные рельсовые цепи на перегонах; устройство "активного хвоста" для каждого поезда, устройства счета осей в поездах.
На участке 7 раздельных пунктов имеют стрелки ручного управления и оборудуются устройствами ключевой зависимости, а также аппаратами для централизованного управления сигналами.
Для повышения безопасности движения устраиваются рельсовые цепи, обеспечивающие контроль свободности или занятости приемоотправочных путей и стрелочных горловин. Управление станционными светофорами индивидуальное, разрешением на отправление поезда на свободный перегон служит открытое положение выходного сигнала.
При полуавтоматической блокировки применяется двухзначная сигнализация, при которой блокируемые участки пути ограждаются выходными светофорами красный огонь тАУ запрещающий или зеленый огонь тАУ разрешаю-щий движение. Светофоры открывает дежурный по станции с аппарата управления.
Закрытие светофоров может быть, выполнено с аппарата управления от воздействия на сигнальную кнопку или автоматически. Для автоматического закрытия светофоров используются рельсовые цепи приемоотправочных путей и стрелочных горловин, а также контрольные путевые участки с короткими рельсовыми цепями (25 м).
Маршрутно-контрольные устройства (МКУ) на станциях системы На-талевича обеспечивают контроль правильности приготовления маршрута и запирание стрелок замками Мелентьева, исключение одновременной установки враждебных маршрутов и разделку маршрута стрелочником лишь с разрешения дежурного по станции.
В помещении дежурного устанавливается распорядительный аппарат МКУ, имеющий по одному блок - механизму на горловину станции и несколько маршрутных рукояток - по одной маршрутной рукоятке на два маршрута. На каждом стрелочном посту устанавливается централизатор -исполнительный аппарат с одним блок-механизмом, маршрутными и сигнальной рукоятками, стрелочными и сигнальными замками.
Устройства ПАБ исключают возможность отправления на перегон второго поезда, если перегон еще занят ранее отправленным поездом. Это достигается тем, что выходной сигнал после проследования мимо него поезда закрывается и замыкается; замыкание может быть снято дежурным по станции следующего раздельного пункта только после фактического прибытия туда отправленного поезда в полном составе.
При полуавтоматической блокировки на перегоне может находиться только один поезд, поэтому пропускная способность заданного железнодорожного участка не высокая.[11]
Применяемая на станциях участка система МКУ имеет и ряд недостатков. В частности, отсутствие объективного контроля свободности маршрута техническими средствами. Поэтому не исключается вероятность установки маршрута на занятый, например, приемо-отправочный путь из-за ошибочных действий персонала.
Система МКУ имеет ограниченную пропускную способность и недостаточно обеспечивает безопасность движения поездов, хотя отличается простотой и невысокой стоимостью. Эти недостатки говорят о необходимости замены данной уже устаревшей системы другой, новой и более совершенной.
1.2 Анализ развития систем автоматики и телемеханики для интервального регулирования движения поездов
Устройства автоблокировки и АЛС, применяемые на железных дорогах нашей страны, основаны на использовании электрических рельсовых цепей. С их помощью контролируют занятое или свободное состояние блок-участков, а также целость рельсовых нитей. Нормативное значение расчетного сопротивления изоляции рельсовой линии при построении рельсовых цепей принято равным 1 Ом км. Практически в большинстве случаев работоспособность рельсовых цепей может быть обеспечена в применяемых системах автоблокировки при снижении сопротивления изоляции до 0,7 и 0,6 Ом км. Нормативное сопротивление поездного шунта составляет 0,06 Ом.
В качестве основного источника электропитания устройств используется продольная высоковольтная линия автоблокировки напряжением 6 или 10 кВ. Резервным источником служит: при электротяге постоянного тока линия электропередач (ЛЭП), подвешенные на опорах контактной сети напряжением 6 или 10 кВ; при электротяге переменного тока линия ДПР напряжением 27,5 кВ; при автономной тяге аккумуляторные батареи.
В отдельных случаях в качестве временного резервного источника могут использоваться стационарные и передвижные дизель-генераторные агрегаты.
На железных дорогах применяются системы автоблокировки, в которых использованы рельсовые цепи с изолирующими стыками. В них информация о состоянии впереди расположенных блок-участков и порядок ведения поезда с точки зрения сближения его с впереди идущим поездом передается машинисту путевыми светофорами. Для повышения безопасности движения и расширения эксплуатационных возможностей системы регулирования одновременно также информация передается машинисту и локомотивным светофором с помощью средств АЛС.
На сети используется четырехзначная система АЛС числового кода, дополняемая автостопом и устройствами контроля скоростей и проверки бдительности машиниста. Весь парк локомотивов оборудован соответствующей приемной аппаратурой.
Основная аппаратура автоблокировки и путевых устройств АЛС размещается в релейных шкафах, располагаемых непосредственно на линии у каждого путевого светофора. Там же располагается силовая аппаратура высоковольтной линии с понижающим трансформатором для электропитания аппаратуры и светофора.
На участках с автономной тягой применяется автоблокировка постоянного тока. В ней используются импульсные рельсовые цепи постоянного тока, длина которых может достигать 2600 м. Исключение опасных положений при коротком замыкании изолирующих стыков обеспечивается чередованием полярности питающего напряжения в смежных рельсовым цепях.
Увязка между показаниями попутных светофоров, передача извещения о приближении поездов к станции и переездам, а также работа устройств диспетчерского контроля и схемы смены направления движения осуществляется по линейным цепям.[10]
Импульсные рельсовые цепи подвержены влиянию аккумуляторного эффекта, особенно на участках с железобетонными шпалами слабо защищены от воздействия помех постоянного и переменного тока. При питании от резерва (аккумуляторных батарей) действие АЛС прекращается. Практически при отключении высоковольтной линии, особенно при повторных отключениях, не во всех случаях может быть обеспечена нормальная работа устройств автоблокировки. Использование аккумуляторных батарей усложняет содержание устройств.
Эти недостатки ухудшают эксплуатационно-технические характеристики системы в целом. Поэтому в настоящее время наблюдается тенденция к внедрению на линиях с автономной тягой кодовой автоблокировки переменного тока с двухцепной высоковольтной линией.
На участках с электротягой применяется кодовая автоблокировка переменного тока с кодовыми рельсовыми цепями. В качестве сигнального тока рельсовых цепей используются кодовые сигналы числовой АЛС. При электротяге постоянного тока частота несущей этих сигналов принята 50 Гц, а при электротяге переменного тока 25 или 75 Гц. Если нормативное значение сопротивления балласта тАУ 1 ОмВ·км, сопротивление поездного шунта - 0,06 Ом, а практически реализуемые коэффициенты возврата и запаса путевых приемников соответственно тАФ 0,75 и 1,1, то расчетная предельная длина рельсовых цепей составляет при частоте 25, 50, 75 Гц соответственно 3500, 3000 и 2700 м.
Уменьшение максимальной длины рельсовых цепей по сравнению с предельными позволяет обеспечить их работоспособность при случайном снижении сопротивлении изоляции ниже нормы.
При автоблокировке с рельсовыми цепями 75 Гц такую же частоту имеет и напряжение питания высоковольтной линии. Резервные источники электропитания в этом случае отсутствуют.
Увязка между показаниями проходных светофоров в кодовой автоблокировке осуществляется по рельсовым цепям. Передача же извещений на станции и переезды, а также работа устройств диспетчерского контроля и смены направления движения осуществляется по линейным цепям. При электротяге постоянного тока используются воздушные или кабельные линии, а при электротяге переменного тока тАУ только кабельные.
Полуавтоматическая блокировка обеспечивается следующими зависимостями: после открытия одного из выходных сигналов замыкаются все выходные сигналы на тот же перегон до тех пор, пока на станцию отправления не будет подан блокировочный сигнал о прибытии на соседнюю станцию отправленного поезда; блокировочный сигнал о прибытии поезда может быть подан на станцию отправления, если датчиками информации и дистанционной аппаратурой отмечено фактическое прибытие поезда на станцию.[3]
Устройства полуавтоматической блокировки автоматически контролируют прибытие поезда на станцию, не имеют приборов, которые бы отмечали прибытие поезда в полном составе. Поэтому работники, обслуживающие ПАБ, должны убедиться в том, что поезд прибыл в полном составе с хвостовыми сигналами, а затем уже подать блокировочный сигнал о прибытии поезда.
Тенденция к повышению скоростей движения и росту числа категорий поездов, следующих по линии с различными максимальными скоростями, обусловило необходимость повышения быстродействия устройств и увеличение объема информации, передаваемой на локомотив. В связи с увеличением скорости движения и мощности электровозов потребовалось повышение защищенности путевых и локомотивных устройств от воздействия тягового тока и его гармонических составляющих. Кроме того. появилась необходимость обеспечить надежную защиту путевых устройств от ложных срабатываний при объединении рельсовых нитей соседних путей. Для решения этих задач с применением современной элементной базы были разработаны новые системы автоблокировки и автоматической локомотивной сигнализации: частотная, унифицированная и централизованная. Основой частотной автоблокировки являются кодовые рельсовые цепи с изолирующими стыками. Для их работы, а также для работы устройств автоматической локомотивной сигнализации используются непрерывные частотные сигналы в диапазоне 100 и 400 Гц. Каждый кодовый сигнал передается в виде комбинации из двух частот разных диапазонов, то есть кодообразование осуществляется по закону сочетаний. Такое построение кода постоянного веса характеризуется большой избыточностью, так как из общего числа возможных комбинаций на все сочетания (64) для передачи сигналов используются только 15 сочетаний из 6 по 2. При этом кодовое расстояние между любыми кодовыми комбинациями составляет 2. Такая относительно большая избыточность, принятая в кодообразовании, позволяет получить достаточно высокую помехозащищенность устройств частотной автоблокировки и АЛС, так как все одиночные повреждения в каналах передачи приводят к защитному отказу, которые контролируются как путевыми, так и локомотивными приемными устройствами.
Исключение опасных положений при коротком замыкании изолирующих стыков и объединении рельсовых нитей соседних путей обеспечивается использованием в соседних и смежных рельсовых цепях каждого пути различных частот и применением гетеродинного способа приема сигналов путевыми приемниками.[4]
Автоблокировка с гетеродинными рельсовыми цепями 75 Гц предназначена для интервального регулирования движения поездов на однопутных и многопутных магистральных участках железных дорог. Она обеспечивает передачу машинисту поезда и автоматически поездным устройствам информации о допустимой скорости движения и количестве свободных блок-участках. Эта информация передается путевыми светофорами и устройствами АЛС. В односторонней системе автоблокировки при движении по неправильному пути она передается только средствами АЛС.
Автоблокировка обеспечивает работу устройства АЛС числового хода в диапазоне со средней частотой 75 Гц и частотной системы локомотивной сигнализации в диапазоне 100 тАУ 400 Гц и может применяться на участках железных дорог с любыми видами тяги.
Для работы рельсовых цепей автоблокировки используются частоты диапазона 50 тАУ 100 Гц. Максимальная длина рельсовой цепи составляет 2000 м. При этом шунтовой и контрольный режимы обеспечиваются при сопротивлении изоляции рельсовой линии не менее 0,55 Ом.
Аппаратура автоблокировки размещается в релейных шкафах, устанавливаемых на каждой сигнальной точке. Увязка между сигнальными показаниями путевых светофоров на соседних сигнальных точках выполняются по линейной цепи.
Устройства частотной автоблокировки на каждой сигнальной точке контролируют состояние необходимого количества блок-участков без применения линейных цепей.
Рельсовые цепи частотной автоблокировки с использованием сигнальных токов в диапазоне 100 тАУ 400 Гц более критичны к снижению сопротивления изоляции рельсовой линии по сравнению с частотами 25 - 75 Гц, применяемыми в числовой кодовой автоблокировке. Поэтому при проектировании максимальная длина рельсовых цепей частотной автоблокировки не должна превышать 1500 м. Кроме того, для нормального действия приемных устройств частотной автоблокировки с выделением низкой разностной частоты электроснабжение сигнальных установок перегона должно осуществляться от единой энергетической системы с целью стабилизации разностной частоты, что в некоторых случаях может вызвать затруднения, например, при электроснабжении от резервных дизель-генераторных установок.
Эти недостатки устранены в унифицированной системе автоблокировки и АЛС, при разработке которой использованы принципы и технические решения, принятые в частотной автоблокировке. К ним относятся применение непрерывных рельсовых цепей с гетеродинными путевыми приемниками а частотных признаков при кодировании сигнальных показании, выполнение аппаратуры на современной элементной базе. Частоты сигнального тока для работы рельсовых цепей размещается в диапазоне 71 - 83 Гц. На этой же частоте обеспечивается действие числовой системы АЛС. Для работы частотной АЛС выбраны те же диапазоны частот (100 - 400 Гц), что и в системе автоблокировки, однако для их образования не используется промышленная частота сети питания. Поэтому электроснабжение устройств унифицированной системы автоблокировки и АЛС может осуществляться от источников переменного и постоянного тока. Увязка между сигнальными показаниями осуществляется по линейным цепям. Максимальная длина рельсовой цепи принято равной 2000 м.
Все рассмотренные системы характеризуются рассредоточенным размещением аппаратуры. Вблизи железнодорожного пути размещаются сигнальные установки, содержащие светофор, шкаф с аппаратурой для управления огнями светофора и выбора кодовых сигналов АЛС, рельсовые цепи с изолирующими стыками, высоковольтные трансформаторы электропитания.
Структура систем автоблокировки и применяемые для ее построения отдельные элементы во многом определяются наличием путевых светофоров, используемых в качестве основного средства регулирования движения поездов. В свою очередь структура и ее элементы определяют эксплуатационно-технические и экономические показатели системы интервального регулирования в целом. [7]
Надежность функционирования автоблокировки и АЛС в значительной степени зависит, например от исправного состояния изолирующих стыков и светофорных ламп, отказы в работе которых составляют 25-30 % общего числа отказов устройств.
Для улучшения условий труда обслуживающего персонала и ускорения процесса отказов устройств приходится прибегать к системам дистанционного контроля исправности отдельных узлов сигнальных установок. Эти контрольные устройства вызывают необходимость в дополнительных каналах связи и усложняют напольную аппаратуру сигнальных установок. Вопрос автоматического резервирования отдельных приборов и устройств не решается и при применении систем дистанционного контроля.
Перспективными с точки зрения качественного улучшения эксплуатационно-технических и экономических показателей являются системы интервального регулирования движения поездов с централизованным размещением аппаратуры (ЦАБ, АБТЦ) при использовании рельсовых цепей без изолирующих стыков.
Возможности наиболее эффективной реализации преимуществ централизованного размещения аппаратуры применения рельсовых цепей без изолирующих стыков появляются при организации движения поездов по сигналам АЛС.[1]
Система интервального регулирования движения поездов по сигналам АЛС находят все более широкое применение как на железных дорогах нашей страны, так и на зарубежных железных дорогах. Разработка и внедрение системы интервального регулирования с централизованным размещением аппаратуры, бесстыковыми рельсовыми цепями и без проходных светофоров являются одним из наиболее перспективных направлений развития и совершенствования устройств, предназначенных для интервального регулирования и обеспечения движения поездов.
1.3 Обоснование постановки задачи
Автоблокировка с централизованным размещением аппаратуры с тональными рельсовыми цепями (АБТЦ) предназначена для интервального регулирования движения поездов на одно- и двухпутных железнодорожных линиях метрополитенов. Система является универсальной, она может применяться при любом виде тяги поездов, а также на линиях с централизованным электроснабжением пассажирских поездов (ЦЭС). Рельсовые цепи этой системы надежно защищены от помех, создаваемых токами ЦЭС, и обеспечивают непрерывность цепи возврата тока ЦЭС по рельсам без установки каких-либо дополнительных устройств.
Основными отличительными особенностями системы АБТЦ являются: использование ТРЦ, отсутствие изолирующих стыков, наличие проходных светофоров и размещение основного оборудования на станциях, ограничивающих перегон.[8]
Принцип построения тональной рельсовой цепи представлен на рисунке 1.1.
С целью повышения эффективности перевозочного процесса, надежности устройств и безопасности движения в системе АБТЦ предусмотрено:
- двухстороннее движение по каждому пути двухпутного перегона;
- наличие защитных участков для обоих направлений движения;
- применение двухнитевых ламп красного огня на всех проходных светофорах, а также желтого огня на предвходных светофорах;
- контроль исправности жил кабеля рельсовых цепей;
- контроль перемыкания жил кабеля питания ламп проходных светофоров;
- контроль последовательности занятия рельсовых цепей при включении кодовых сигналов АЛС;
- более совершенная схема контроля правильности занятия и освобождения рельсовых цепей блок-участка (контроль потери шунта) с блокировкой светофоров и схем кодирования АЛС.
Рисунок 1.1 тАУ Принцип построения ТРЦ
Основными узлами станционных устройств системы являются: постовое оборудование рельсовых цепей, схемы включения и контроля ламп проходных светофоров, схемы кодирования рельсовых цепей для передачи информации на локомотив, схемы замыкания и размыкания перегонных устройств с целью исключения опасных ситуаций при потере шунта. Кроме того, в работе системы участвуют линейные цепи, схема смены направления, схема увязки с устройствами электрической централизации и переездными устройствами.
В схемах ТРЦ предусмотрен контроль исправности жил кабеля. При перемыкании жил схема контроля отключает питание рельсовых цепей, при обрыве тАУ включает соответствующую индикацию на пульте.
Обобщенная структурная схема ТРЦ представлена на рисунке 1.2.
Путевые приемники контролируют состояние рельсовых цепей той части перегона, которая отнесена к данной станции. Путевые реле этих РЦ воздействуют на сигнальные реле, которые обеспечивают выбор требуемых показаний проходных светофоров и кодовых сигналов АЛС. Кроме того, путевые реле воздействуют на схемы включения кодовых сигналов в рельсовые цепи и на блокирующие реле, управляют схемами контроля последовательного занятия рельсовых цепей и схемами контроля последовательного освобождения РЦ.[20]
В схемах управления огнями светофоров предусмотрен контроль исправности жил кабеля. При обрыве жил обеспечивается включение на табло индикации о перегорании нити лампы светофора, а в ряде случаев (при обрыве прямой жилы основной нити двухнитевой лампы) осуществляется подключение резервной нити. При перемыкании прямой и обратной жил производится отключение питания ламп светофора.
Рисунок 1.2 тАУ Обобщенная структурная схема ТРЦ
Для передачи на локомотив информации об условиях движения предусмотрен формирователь сигналов АЛС. Схема выбора сигналов АЛС выбирает требуемые кодовые комбинации в зависимости от состояния сигнальных реле.
Схема включения кодовых сигналов подает их в рельсы занятой РЦ по команде соответствующего путевого реле. При этом кодовые сигналы подаются в рельсы только при условии соблюдения последовательности их занятия. При наложении постороннего шунта, изломе рельса или ложной занятости рельсовой цепи схема контроля последовательного занятия рельсовых цепей запрещает передачу разрешающих кодовых сигналов. Этим исключается возможность включения на локомотивном светофоре разрешающего показания при приближении к закрытому проходному светофору.
Кодовые сигналы АЛС подаются в рельсы по существующим питающим и релейным жилам кабеля рельсовых цепей.[21]
Схемы замыкания и размыкания перегонных устройств включают в себя блокирующие реле и схемы контроля последовательного освобождения рельсовых цепей. При вступлении поезда на какой-либо блок-участок блокирующее реле воздействует на сигнальные реле этого блок-участка, чем исключается открытие светофора, ограждающего данный БУ, и выбор разрешающего кодового сигнала для предыдущего блок-участка (замыкание блок-участка).
Размыкание блок-участка проводится автоматически с участием схемы контроля последовательного освобождения рельсовых цепей этого БУ и защитного участка. Нарушение указанной последовательности при освобождении блок-участка может быть следствием потери шунта при фактически занятом БУ или защитном участке. При этом размыкание блок-участка не происходит и разрешающий сигнал не включается.
Для размыкания блок-участка при ложной занятости или неисправности схемы в системе АБТЦ предусмотрена схема искусственной разделки, которую в инструктивном порядке проводит дежурный по станции отправления.
Схемы, указанные на структуре АБТЦ, кроме схем ТРЦ и формирователя сигналов АЛС, строятся для каждого блок-участка и являются общими как для установленного правильного, так и неправильного направлений движения. Перестройка схем в зависимости от установленного направления движения осуществляется схемой смены направления.[13]
Станционная аппаратура АБТЦ размещается на станциях, ограничивающих перегон, устанавливается в постах ЭЦ или в транспортабельных модулях и соединяется с напольным оборудованием при помощи кабеля. Деление перегона (раздел кабеля) производится по сигнальной установке, находящейся в середине перегона. При этом рекомендуется светофор и питающий конец РЦ, расположенный непосредственно за этим светофором, подключать к станции отправления. Длина кабеля не должна превышать 9 км для управления светофором и 12 км ‑ для рельсовых цепей.
При небольшой длине перегона аппаратура может быть размещена на одной из станций. При большой длине перегона часть аппаратуры размещается в транспортабельном модуле в середине перегона.
К напольному оборудованию системы АБТЦ относятся проходные светофоры, соединительные кабели, разветвительные муфты, путевые ящики для размещения устройств согласования и защиты ТРЦ и для установки сигнальных трансформаторов.
На переездах с автоматической светофорной сигнализацией устанавливается релейный шкаф с аппаратурой схемы включения и контроля переездных устройств, переездные светофоры, устройства заграждения переезда и линейные трансформаторы или трансформаторные подстанции для основного и резервного питания. При наличии автошлагбаумов кроме этого устанавливают батарейный шкаф, заградительные светофоры и щиток управления. Предельные длины тональных рельсовых цепей представлены в таблице 1.1.
Если в пределах какой-либо РЦ расположен дроссель-трансформатор, предназначенный для выравнивания тягового тока, включения междупутных перемычек, отсасывающих фидеров или устройства заземлений, то ее предельная длина уменьшается в 1,5 раза по сравнению с данными, указанными в таблице 1.1.
Размещение напольного оборудования и кабельную сеть системы АБТЦ изображают на путевом плане перегона, на котором должны быть также указаны:
- ординаты установки оборудования;
- длины рельсовых цепей, расположение питающих и релейных концов, комбинации несущих и модулирующих частот путевых генераторов;
- марка кабеля и его назначение, длина, жильность, число запасных жил, схемное обозначение жил.
Таблица 1.1 тАУ Предельные длины рельсовых цепей
Длина кабеля,км | 580 Гц | 720 Гц | 780 Гц | 420; 480 Гц | 580; 720; 780 Гц | |||
L1, м | L2, м | L1, м | L2, м | L1, м | L2, м | L3, м | L3, м | |
До 6,0 | Ва300 | Ва550 | Ва350 | Ва600 | Ва350 | Ва600 | Ва1000 | Ва700 |
6,0-9,0 | Ва300 | Ва500 | Автоматизированная система оперативного управления перевозками Автоматика и автоматизация на железнодорожном транспорте Автомобильные дизельные топлива Автомобильные эксплуатационные материалы |