Основы защиты информации и сведений, составляющих государственную тайну. Правовая охрана программ для ЭВМ
Страница 6
Результатом реализации угроз может быть утечка, искажение или утрата информации.
3.4 Использование программных и программно-аппаратных средств обеспечения безопасности информации
К аппаратным средствам защиты информации относятся электронные и электронно-механические устройства, включаемые в состав КС и выполняющие (как самостоятельно, так и при помощи программных средств) некоторые функции по обеспечению безопасности информации.
К основным аппаратным средствам защиты информации относятся:
§ Устройства ввода идентифицирующий пользователя информации;
§ Устройства шифрования информации;
§ Устройства для воспрепятствования несанкционированному включению рабочих станций серверов.
Под программными средствами информационной безопасности понимают специальные программные средства, включаемые в состав программного обеспечения КС исключительно для выполнения защитах функций.
К основным программным средствам защиты информации относятся:
§ Программы идентификации, аутентификации пользователей КС;
§ Программы разграничения доступа пользователей к ресурсам КС;
§ Программы от несанкционированного доступа, копирования изменения и использования.
К преимуществам программных средств защиты информации относятся:
§ простота тиражирования;
§ Гибкость (возможность настройки на различные условия применения);
§ Простота применения;
§ Практически неограниченные возможности их развития.
К недостаткам программных средств относятся:
§ снижение эффективности КС за счет потребления ее ресурсов, требуемых для функционирования программ защиты;
§ Более низкая производительность;
§ Пристыкованность многих программных средств.
Глава 4. Основные методы защиты информации
4.1 Использование Криптографических методов
Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом волновала человеческий ум с давних времен. История криптографии - ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была криптографической системой, так как в древних обществах ею владели только избранные. Священные книги Древнего Египта, Древней Индии тому примеры.
С широким распространением письменности криптография стала формироваться как самостоятельная наука. Первые криптосистемы встречаются уже в начале нашей эры. Так, Цезарь в своей переписке использовал уже более менее систематический шифр, получивший его имя.
Бурное развитие криптографические системы получили в годы первой и второй мировых войн. Начиная с послевоенного времени и по нынешний день появление вычислительных средств ускорило разработку и совершенствование криптографических методов.
Проблемой защиты информации путем ее преобразования занимается криптология (kryptos - тайный, logos - наука). Криптология разделяется на два направления - криптографию и криптоанализ. Цели этих направлений прямо противоположны.
Криптография занимается поиском и исследованием математических методов преобразования информации.
Сфера интересов криптоанализа - исследование возможности расшифровывания информации без знания ключей.
Современная криптография включает в себя четыре крупных раздела:
Симметричные криптосистемы.
Криптосистемы с открытым ключом.
Системы электронной подписи.
Управление ключами.
Основные направления использования криптографических методов - передача конфиденциальной информации по каналам связи (например, электронная почта), установление подлинности передаваемых сообщений, хранение информации (документов, баз данных) на носителях в зашифрованном виде.
Как бы ни были сложны и надежны криптографические системы - их слабое мест при практической реализации - проблема распределения ключей. Для того, чтобы был возможен обмен конфиденциальной информацией между двумя субъектами ИС, ключ должен быть сгенерирован одним из них, а затем каким-то образом опять же в конфиденциальном порядке передан другому. Т.е. в общем случае для передачи ключа опять же требуется использование какой-то криптосистемы.
Для решения этой проблемы на основе результатов, полученных классической и современной алгеброй, были предложены системы с открытым ключом.
Суть их состоит в том, что каждым адресатом ИС генерируются два ключа, связанные между собой по определенному правилу. Один ключ объявляется открытым, а другой закрытым. Открытый ключ публикуется и доступен любому, кто желает послать сообщение адресату. Секретный ключ сохраняется в тайне.
Исходный текст шифруется открытым ключом адресата и передается ему. Зашифрованный текст в принципе не может быть расшифрован тем же открытым ключом. Дешифрование сообщение возможно только с использованием закрытого ключа, который известен только самому адресату.
4.2 Методы защиты информации в Internet
Сегодня самая актуальная для Internet тема - проблема защиты информации. Сеть стремительно развивается в глобальных масштабах, и все большее распространение получают системы внутренних сетей (intranet, интрасети). Появление на рынке новой огромной ниши послужило стимулом как для пользователей, так и для поставщиков сетевых услуг к поиску путей повышения безопасности передачи информации через Internet.
Проблема безопасности в Internet подразделяется на две категории: общая безопасность и вопросы надежности финансовых операций. Успешное разрешение проблем в сфере финансовой деятельности могло бы открыть перед Internet необозримые перспективы по предоставлению услуг для бизнеса. В борьбу за решение этой проблемы включились такие гиганты в области использовани кредитных карточек, как MasterCard и Visa, а также лидеры компьютерной индустрии Microsoft и Netscape. Все это касается "денежных" дел; наша же статья посвящена проблеме общей безопасности.
Задача исследований в этой области - решение проблемы конфиденциальности.
Кроме конфиденциальности пользователей также волнует вопрос гарантий, с кем они сейчас "беседуют". Им необходима уверенность, что сервер Internet, с которым у них сейчас сеанс связи, действительно является тем, за кого себя выдает; будь то сервер World-Wide Web, FTP, IRC или любой другой. Не составляет особого труда имитировать (то ли в шутку, то ли с преступными намерениями) незащищенный сервер и попытаться собрать всю информацию о вас. И, конечно же, поставщики сетевых услуг также хотели бы быть уверенными, что лица, обращающиеся к ним за определенными ресурсами Internet, например, электронной почтой и услугами IRC, действительно те, за кого себя выдают.
4.3 Метод парольной защиты
Законность запроса пользователя определяется по паролю, представляющему собой, как правило, строку знаков. Метод паролей считается достаточно слабым, так как пароль может стать объектом хищения, перехвата, перебора, угадывания. Однако простота метода стимулирует поиск путей его усиления.
Для повышения эффективности парольной защиты рекомендуется:
1. выбирать пароль длиной более 6 символов, избегая распространенных, легко угадываемых слов, имен, дат и т.п.;
2. использовать специальные символы;
3. пароли, хранящиеся на сервере, шифровать при помощи односторонней функции;
4. файл паролей размещать в особо защищаемой области ЗУ ЭВМ, закрытой для чтения пользователями;
5. комментарии файла паролей следует хранить отдельно от файла;
6. периодически менять пароли;
7. предусмотреть возможность насильственной смены паролей со стороны системы через определенный промежуток времени;
8. использовать несколько пользовательских паролей: собственно пароль, персональный идентификатор, пароль для блокировки/разблокировки аппаратуры при кратковременном отсутствии и т.п.
В качестве более сложных парольных методов используется случайная выборка символов пароля и одноразовое использование паролей. В первом случае пользователю (устройству) выделяется достаточно длинный пароль, причем каждый раз для опознавания используется часть пароля, выбираемая случайно. При одноразовом использовании пароля пользователю выделяется не один, а большое количество паролей, каждый из которых используется по списку или по случайной выборке один раз.