Аксиоматика теории множеств

Страница 7

А к с и о м а U. (Аксиома объединения.)

xyu (u y v (u v & v x)).

Эта аксиома утверждает, что объединение(х) всех элементов мно­жества х является также множеством, т. е. x (M((х))). Множество и (х) обозначают также через и v.

Средством порождения новых множеств из уже имеющихся является образование множества всех подмножеств данного множества.

А к с и о м а W. (Аксиома множества всех подмножеств.)

xyu (u y u x).

Эта аксиома утверждает, что класс всех подмножеств множества х есть также множество; его будем назы­вать множеством всех подмножеств множества х. В силу этой аксиомы, x (M(P (х))).

Примеры.

P (0) = {0}.

P ({0}) = {0, {0}}.

P ({0, {0}}) = {0, {0}, {0, {0}}, {{0}}}.

Значительно более общим средством построения новых множеств является следующая ак­сиома выделения.

А к с и о м а S.

xY zu (u z u x & u Y).

Таким образом, для любого множества х и для любого класса Y су­ществует множество, со­стоящее из элементов, общих для х и Y. Следо­вательно, xY (M (x ∩ Y)), т. е. пересече­ние множества с классом есть множество.

Предложение 5. xY (Y x M (Y)) (т. е. подкласс множе­ства есть множество).

Доказательство. x (Y x Y ∩ x = Y) и x (M (Y ∩ x)).

Так как всякая предикативная формула A(у) порождает соответ­ст­вующий класс (предло­жение 4), то из аксиомы S следует, что для любого множества х класс всех его элементов, удовлетворяющих дан­ной предика­тивной формуле A(у), есть множество.

Однако для полного развития теории множеств потребуется ак­сиома, более сильная, чем аксиома S. Введем предварительно несколько оп­ределений.

Определения

Un (X) означает xyz ( X & X y = z).

(X однозначен.)

Fnc (X) означает X V2 & Un (X). (X есть функция.)

Y 1 X означает X ∩ (Y V). (Огра­ничение Х областью Y.)

Un1 (X) означает Un (X) & Un (). (X взаимно однозначен.)

X‘Y

Если существует единственное z такое, что X, то z = X‘y; в про­тивном случае X‘y = 0. Если Х есть функция, а у — множество из области определения X, то X‘y есть значе­ние этой функции, примененной к у (В дальнейшем будем по мере необходимости вводить новые функ­циональные буквы и предметные константы, как только будет ясно, что соот­ветствующее определение может быть обосновано теоремой о единственности. В настоящем случае происходит введение неко­торой новой функциональной буквы h с сокращенным обозначением Х‘Y вместо h (X, Y)).

X‘‘Y = R(Y 1 X). (Если Х есть функция, то X‘‘Y есть об­ласть значений класса X, ограниченного областью Y.)

А к с и о м а R. (Аксиома замещения.)

x (Un (X) yu (u y v ( X & v X))).

Аксиома замещения утверждает, что если класс Х однозначен, то класс вторых компонент тех пар из X, первые компоненты которых принадлежать, является множеством (эквивалент­ное утверждение: M(R (x 1X))) Из этой аксиомы следует, что если Х есть функция, то об­ласть значений результата ограничения Х посредством всякой области, являющейся множест­вом, также есть множество.

Следующая аксиома обеспечивает существование бесконечных мно­жеств.

А к с и о м а I. (Аксиома бесконечности.)

x (0 x & u (u x u {u} x)).