Алгебра

Алгебра

“Алгебра есть не что иное, как математический язык, приспособленный для обозначения отношений между количествами”.

И. Ньютон

Алгебра – часть математики, которая изучает общие свойства действий над различными ве­личинами и решение уравнений, связанных с этими действиями.

Решим задачу: “Возрасты трех братьев 30, 20 и 6 лет. Через сколько лет возраст старшего будет равен сумме возрастов обоих млад­ших братьев?” Обозначив искомое число лет через х, составим уравнение: 30 + х = (20+х) + (6 + х) откуда х = 4. Близкий к описан­ному метод решения задач был известен еще во II тысячелетии до н.э. писцам Древнего Египта (однако они не применяли буквенной символики). В сохранившихся до наших дней математических папирусах имеются не только задачи, которые приводят к уравнениям пер­вой степени с одним неизвестным, как в зада­че о возрасте братьев, но и задачи, приводя­щие к уравнениям вида ах2 = b.

Еще более сложные задачи умели решать с начала II тысячелетия до н.э. в Древнем Вавилоне; в математических текстах, выпол­ненных клинописью на глиняных пластинках, есть квадратные и биквадратные уравнения, системы уравнений с двумя неизвестными и даже простейшие кубические уравнения. При этом вавилоняне также не использовали букв, а приводили решения “типовых” задач, из которых решения аналогичных задач полу­чались заменой числовых данных. В числовой форме приводились и некоторые правила тождественных преобразований. Если при решении уравнения надо было извлекать квадратный корень из числа а, не являющегося точным квадратом, находили приближенное значение корня х: делили а на х и брали среднее арифметическое чисел х и а/х.

Первые общие утверждения о тождественных преобразованиях встречаются у древнегреческих математиков, начиная с VI в. до н.э. Среди математиков Древней Греции было принято выражать все алгебраические утверждения в геометрической форме. Вместо сложения чисел говорили о сложении отрезков, произведение двух чисел истолковывали как площадь прямоугольника, а произведение трех чисел–как объем прямоугольного параллелепипеда. Алгебраические формулы принимали вид соотношений между площадями и объемами. Например, говорили, что площадь квадрата, построенного на сумме двух отрезков, равна сумме площадей квадратов, построенных на этих отрезках, увеличенной на удвоенную площадь прямоугольника, построенного на этих отрезках. С того времени и идут термины “квадрат числа” (т. е. произведение величины на самое себя), “куб числа”, “среднее геометрическое”. Геометрическую форму приняло у греков и решение квадратных уравнений - они искали стороны прямоугольника по заданным периметру и площади.

Большинство задач решалось в Древней Греции путем построений циркулем и линейкой. Но не все задачи поддавались такому решению. Например, “не решались” задачи удвоения куба, трисекции угла, задачи построения правильного семиугольника. Они приводили к кубическим уравнениям вида х3 = 2, 4х3 - Зх = а и х3 + х2 - 2х - 1 = 0 соответственно. Для решений этих задач был разработан новый метод, связанный с отысканием точек пересечения конических сечений (эллипса, параболы и гиперболы).

Геометрический подход к алгебраическим проблемам сковывал дальнейшее развитие науки, так как, например, нельзя было складывать величины разных размерностей (длины и площади или площади и объемы), нельзя было говорить о произведении более чем трех множителей и т.д. Отказ от геометрической трактовки наметился у Диофанта Александрийского, жившего в III в. В его книге “Арифметика” появляются зачатки буквенной символики и специальные обозначения для степеней неизвестного вплоть до 6-й. Были у него и обозначения для степеней с отрицательными показателями, обозначения для отрицательных чисел, а также знак равенства (особого знака для сложения еще не было), краткая запись правил умножения положительных и отрицательных чисел. На дальнейшее развитие алгебры сильное влияние оказали разобранные Диофантом задачи, приводящие к сложным системам алгебраических уравнений, в том числе к системам, где число уравнений было меньше числа неизвестных. Для таких уравнений Диофант искал лишь положительные рациональные решения.

С VI в. центр математических исследований перемещается в Индию и Китай, страны Ближнего Востока и Средней Азии. Китайские ученые разработали метод последовательного исключения неизвестных для решения систем линейных уравнений, дали новые методы приближенного решения уравнений высших степеней. Индийские математики использовали отрицательные числа и усовершенствовали буквен­ную символику. Однако лишь в трудах ученых Ближнего Востока и Средней Азии ал­гебра оформилась в самостоятельную ветвь математики, трактующую вопросы, связанные с решением уравнений. В IX в. узбекский ма­тематик и астроном Мухаммед ал-Хорезми написал трактат “Китаб аль-джебр валь-мукабала”, где дал общие правила для решения уравнений первой степени. Слово,,алъ-джебр" (восстановление), от которого новая наука алгебра получила свое название, означало перенос отрицательных членов уравнения из одной его части в другую с изменением знака. Ученые Востока изучали и решение кубических уравнений, хотя не сумели получить общей формулы для их корней.

В Западной Европе изучение алгебры началось в XIII в. Одним из крупных математиков этого времени был итальянец Леонардо Пизанский (Фибоначчи) (ок. 1170 – после 1228). Его “Книга абака” (1202) – трактат, который содержал сведения об арифметике и алгебре до квадратных уравнений включительно (см. Числа Фибоначчи). Первым крупным само­стоятельным достижением западноевропей­ских ученых было открытие в XVI в. формулы для решения кубического уравнения. Это бы­ло заслугой итальянских алгебраистов С. Дель Ферро, Н. Тарталья и Дж. Кардано. Ученик последнего – Л. Феррари решил и уравнение 4-й степени. Изучение некоторых вопросов, связанных с корнями кубических уравнений, привело итальянского алгебраиста Р. Бомбелли к от­крытию комплексных чисел.

Отсутствие удобной и хорошо развитой символики сковывало дальнейшее развитие алгебры: самые сложные формулы приходи­лось излагать в словесной форме. В конце XVI в. французский математик Ф. Виет ввел буквенные обозначения не только для не­известных, но и для произвольных по­стоянных. Символика Виета была усовершен­ствована многими учеными. Окончательный вид ей придал в начале XVII в. французский философ и математик Р. Декарт, который ввел (употребляемые и поныне) обозначения для показателей степеней.

Постепенно расширялся запас чисел, с ко­торыми можно было производить действия. Завоевывали права гражданства отрица­тельные числа, потом – комплексные, ученые стали свободно применять иррациональные числа. При этом оказалось, что, несмотря на такое расширение запаса чисел, ранее установленные правила алгебраических преобразований сохраняют свою силу. Нако­нец, Декарту удалось освободить алгебру от несвойственной ей геометрической формы. Все это позволило рассматривать вопросы ре­шения уравнений в самом общем виде, приме­нять уравнения к решению геометрических за­дач. Например, задача об отыскании точки пересечения двух линий свелась к решению системы уравнений, которым удовлетворяли точки этих линий. Такой метод решения гео­метрических задач получил название аналити­ческой геометрии.

Развитие буквенной символики позволило установить общие утверждения, касающиеся алгебраических уравнений: теорему Безу о де­лимости многочлена Р (х) на двучлен х - а, где а – корень этого многочлена; соотношения Виета между корнями уравнения и его коэф­фициентами; правила, позволяющие оцени­вать число действительных корней уравнения; общие методы исключения неизвестных из си­стем уравнений и т.д.

Особенно далеко было продвинуто в XVIII в. решение систем линейных уравне­ний – для них были получены формулы, позво­ляющие выразить решения через коэффи­циенты и свободные члены. Дальнейшее изу­чение таких систем уравнений привело к созданию теории матриц и определителей. В конце XVIII в. было доказано, что любое алгебраическое уравнение с комплексными коэффициентами имеет хотя бы один ком­плексный корень. Это утверждение носит на­звание основной теоремы алгебры.