Собственные значения

Собственные значения

1. ВВЕДЕНИЕ

Целый ряд инженерных задач сводится к рассмотрению систем уравнений, имеющих единственное решение лишь в том случае, если известно значение некоторого входящего в них параметра. Этот особый параметр называется характеристическим, или соб­ственным, значением системы. С задачами на собственные значе­ния инженер сталкивается в различных ситуациях. Так, для тензоров напряжений собственные значения определяют главные нормальные напряжения, а собственными векторами задаются направления, связанные с этими значениями. При динамическом анализе механических систем собственные значения соответст­вуют собственным частотам колебаний, а собственные векторы характеризуют моды этих колебаний. При расчете конструкций собственные значения позволяют определять критические на­грузки, превышение которых приводит к потере устойчивости.

Выбор наиболее эффективного метода определения собствен­ных значений или собственных векторов для данной инженерной задачи зависит от ряда факторов, таких, как тип уравнений, число искомых собственных значений и их характер. Алгоритмы решения задач на собственные значения делятся на две группы. Итерационные методы очень удобны и хорошо приспособлены для определения наименьшего и наибольшего собственных значений. Методы преобразований подобия несколько сложней, зато позволяют определить все собственные значения и собственные векторы.

В данной работе будут рассмотрены наиболее распространенные методы решения задач на собственные значения. Однако сначала приведем некоторые основные сведения из теории матричного и векторного исчислений, на которых базируются методы опреде­ления собственных значений.

2. НЕКОТОРЫЕ ОСНОВНЫЕ СВЕДЕНИЯ, НЕОБХОДИМЫЕ ПРИ РЕШЕНИИ ЗАДАЧ НА СОБСТВЕННЫЕ ЗНАЧЕНИЯ

В общем виде задача на собственные значения формулируется следующим образом:

AX = lX,

где A — матрица размерности n х n. Требуется найти n скаляр­ных значений l и собственные векторы X, соответствующие каждому из собственных значений.

Основные определения матричного исчисления

1. Матрица A называется симметричной, если

аij = аij, где i, j = 1, 2, . . ., n.

Отсюда следует симметрия относительно диагонали

аkk, где k == 1, 2, . . ., n.

Матрица

1

4

5

4

3

7

5

7

2

является примером симметричной.

2. Матрица A называется трехдиагональной, если все ее элементы, кроме элементов главной и примыкающих к ней диа­гоналей, равны нулю. В общем случае трехдиагональная матри­ца имеет вид

                 

*

*

         

0

 

*

*

*

           
 

*

*

*

         
 

.

.

.

.

.

.

   
         

*

*

*

 
 

0

       

*

*

*

             

*

*

Важность трехдиагональной формы обусловлена тем, что некоторые методы преобразований подобия позволяют привести произвольную матрицу к этому частному виду.

3. Матрица A называется ортогональной, если

АТА = Е,

где Ат—транспонированная матрица A, а Е—единичная матрица. Очевидно, матрица, обратная ортогональной, эквива­лентна транспонированной.

4. Матрицы А и В называются подобными, если существует такая несингулярная матрица Р, что справедливо соотношение

В = Р-1АР.

Основные свойства собственных значений.

1. Все п собственных значений симметричной матрицы раз­мерности пХп, состоящей из действительных чисел, действи­тельные. Это полезно помнить, так как матрицы, встречающиеся в инженерных расчетах, часто бывают симметричными.

2. Если собственные значения матрицы различны, то ее соб­ственные векторы ортогональны. Совокупность п линейно неза­висимых собственных векторов образует базис рассматривае­мого пространства. Следовательно, для совокупности линейно независимых собственных векторов

Xi, где i == 1,. . ., n,

любой произвольный вектор в том же пространстве можно выра­зить через собственные векторы. Таким образом,

n

Y = SaiXi.

i=1

3. Если две матрицы подобны, то их собственные значения сов­падают. Из подобия матриц A и В следует, что

В = Р-1АР.

Так как

АХ = lХ,

то

Р-1АХ = lР-1Х.

Если принять Х == РY, то

Р-1АРY = lY,

а

ВY == lY.

Таким образом, матрицы A и В не только имеют одинаковые собственные значения, но и их собственные векторы связаны соот­ношением

Х = Р Y.

4. Умножив собственный вектор матрицы на скаляр, получим собственный вектор той же матрицы. Обычно все собственные векторы нормируют, разделив каждый элемент собственного вектора либо на его наибольший элемент, либо на сумму квадра­тов всех других элементов.