Собственные значения

Страница 4

Значения q заключены в интервале

p p

- — <= q <= —.

4 4

Пример 2

Пусть требуется найти значения всех главных напряжений для напряженного состояния, показанного на рисунке примера 1. Для этого необходимо найти все собственные значения матрицы напряжений. Такая потребность возникает, если конструктор вместо теории разрушения при максимальном нормальном напряжении намерен пользоваться какой-либо другой теорией разрушения. Чтобы найти все собственные значения, обратимся к методу преобразований Якоби, для реализации которого воспользуемся подпрограммой Е1GЕМ из пакета программ для научных исследований фирмы IВМ, предназначенной для симметричных матриц. Так как матрица симметрична, то она содержит лишь шесть различных элементов. Для экономии памяти подпрограмма ЕIGЕМ использует матрицу 3Х3 в компактной форме, при которой требуется только шесть ячеек памяти. Программа для решения данной задачи имеет вид:

{**********************************************************************}

Программа определение всех главных напряжении трехосной матрицы напряжений.

В программе использовано подпрограмма ЕIGЕМ из пакета программ для научных исследований фирмы IВМ

{**********************************************************************}

DIMENSION S<6),R(?) С

# Задание матрицы в компактной форме

S(1) = 10 Е06

S(2) = 5 Е06

S(3) = 20 Е06

S(4) = 6 Е06

S(5) = 4 Е06

S(6) = 30 Е06

# Определение всех собственных значений методом Якоби

CALL EIGEN(S,R,3,0)

# Печать собственные значении

WRITE(6,100)

WRITE(6,101) S(1),S(3),3(6)

100 FORMAT(1Х,'ТНЕ EIGENVALUES ARE'')

101 FORMAT(1X,E15.8)

STOP

END

Результат работы программы получаем в виде:

Собственные значения равны

0.33709179E 08

0.19149061E 08

0.71417603E 07

Метод Гивенса для симметричных матриц

Метод Гивенса основан на преобразовании подобия, аналогич­ном применяемому в методе Якоби. Однако в этом случае алго­ритм построен таким образом, что вновь образованные нулевые элементы при всех последующих преобразованиях сохраняются. Поэтому метод Гивенса требует выполнения конечного числа преобразований и по сравнению с методом Якоби связан с мень­шими затратами машинного времени. Его единственный недоста­ток состоит в том, что симметричная матрица приводится не к диагональному, а к трехдиагональному виду. Ниже будет пока­зано, что такая форма матрицы может быть весьма полезной и оправдывает усилия, затраченные на ее получение.

В случае матрицы размерности п х п метод Гивенса требует п — 2 основных шагов, на каждом из которых выполняется ряд преобразований, число которых зависит от числа нулей, кото­рое хотят получить в данном столбце или строке. На k -м шаге обращают в нули элементы, стоящие вне трех диагоналей k-й строки и k -го столбца, сохраняя в то же время нулевые элементы, полученные на предыдущих шагах. Таким образом, перед нача­лом k -го шага преобразованная матрица является трехдиа­гональной, если ограничиться рассмотрением ее первых k — 1 строк и столбцов. По мере преобразований симметричная матри­ца размерности 5х5 приобретает следующие формы:

 

*

*

*

*

*

 
 

*

*

*

*

*

 

A0=

*

*

*

*

*

исходная матрица,

 

*

*

*

*

*

 
 

*

*

*

*

*

 

 

*

*

0

0

0

 
 

*

*

*

*

*

 

A1=

0

*

*

*

*

после первого основного шага,

 

0

*

*

*

*

состоящего из трех преобразований,

 

0

*

*

*

*

 

 

*

*

0

0

0

 
 

*

*

*

0

0

 

A2=

0

*

*

*

*

после второго основного шага,

 

0

0

*

*

*

состоящего из двух преобразований,

 

0

0

*

*

*

 

 

*

*

0

0

0

 
 

*

*

*

0

0

после третьего основного шага,

A3=

0

*

*

*

0

состоящего из одного преобразования.

 

0

0

*

*

*

Теперь матрица име­ет трехдиагональный вид.

 

0

0

0

*

*