Собственные значения
Страница 6
………………………………………………………………………………………………………
| |||
| |||
Рис. 3. Итерационное определение корней полинома
6. ДРУГИЕ МЕТОДЫ ВЫЧИСЛЕНИЯ СОБСТВЕННЫХ ЗНАЧЕНИЙ
В этом разделе мы рассмотрим два метода определения собственных значений, имеющие большое практическое значение. Оба разработаны в последние 20 лет и наиболее эффективны в тех случаях, когда требуется найти все собственные значения произвольной матрицы действительных или комплексных чисел. В обоих используются преобразования, позволяющие получить последовательность подобных матриц, сходящуюся к матрице блочной треугольной формы:
X1 |
* |
… |
… |
* |
* |
* | |
x2 |
* |
… |
… |
* |
* |
* | |
x3 |
… |
… |
* |
* |
* | ||
… |
… |
* |
* |
* | |||
… |
* |
* |
* | ||||
… |
* |
* | |||||
0 |
… |
* | |||||
* |
где блоки Хm, представляют собой матрицы размерности 2 х 2, расположенные на главной диагонали. Собственные значения блоков Хm, являются в то же время собственными значениями исходной матрицы размерности п x п. Такая форма удобна, так как детерминант второго порядка блоков Хm позволяет определять комплексные собственные значения, не вводя комплексных элементов в окончательную матрицу. Если все собственные значения исходной матрицы действительные, то в окончательном виде она будет треугольной, причем собственные значения будут расположены на диагонали.
Метод LR
Этот метод первоначально был разработан Рутисхаузером в 1958 г. Метод основан на представлении матрицы A в виде произведения
А = LR,
где L — левая треугольная матрица с единичными диагональными элементами, а R — правая треугольная. Применяя преобразование подобия L-1 A R, видим, что,
A2 = L-1 A R = L-1 (RL)L = R L.
Следовательно,
Am-1 = L m-1 Rm-1,
Am = R m-1 Lm-1.
Этот процесс повторяется до тех пор, пока Ls не превратится в единичную матрицу Е, а Rs не приобретет квазидиагональную форму. Хотя этот метод очень удобен, он не всегда устойчив. Поэтому предпочтение часто отдают другому методу.
Метод QR
Метод QR. предложен Фрэнсисом в 1961 г. Соответствующий ему алгоритм определяется соотношением
Am = Q m Rm.
где Q m — ортогональная матрица, а Rm — верхняя треугольная матрица. При использовании метода последовательно получаем
Am+1 = Q mT Am Q m = Q mT Q m Rm Q m = Rm Q m.
В пределе последовательность матриц А стремится к квазидиагональной форме. Этот метод сложнее предыдущего и требует больших затрат машинного времени. Однако его устойчивость,обусловленная использованием ортогональных преобразующих матриц, обеспечила ему прочную репутацию лучшего метода решения задач самой общей формы.
Пример 3
Пусть требуется найти все собственные значения произвольной матрицы размерности 6 x 6
2,3 |
4,3 |
5,6 |
3,2 |
1,4 |
2,2 |
1,4 |
2,4 |
5,7 |
8,4 |
3,4 |
5,2 |
2,5 |
6,5 |
4,2 |
7,1 |
4,7 |
9,3 |
3,8 |
5,7 |
2,9 |
1,6 |
2,5 |
7,9 |
2,4 |
5,4 |
3,7 |
6,2 |
3,9 |
1,8 |
1,8 |
1,7 |
3,9 |
4,6 |
5,7 |
5,9 |
Сделаем это в два приема, приведя сначала матрицу с помощью преобразования подобия к виду Гсссенберга, затем с помощью разновидности метода QR найдем собственные значения. В приведенной ниже программе использованы две подпрограммы из пакета программ для научных исследований фирмы IВМ. Подпрограмма НSВС преобразует матрицу размерности 6 x 6 к форме Гессенберга, а подпрограмма АТЕIG позволяет найти собственные значения.