Алгебраические числа

Страница 3

Пример:

1) и алгебраические числа 2-й степени, а - алгебраическое число 4 степени. Действительно, если a=, то a2=5+, 24-10a2+1=0, т.е. a корень многочлена f(x)=x4-10x2+1 с целыми коэффициентами, и f(x)=(x-)(x-)(x+)(x+) (4)

Из теоремы единственности над полем рациональных чисел множители f(x) должны являться произведением каких-то множителей правой части равенства (4). Легко видеть, что из этих множителей нельзя составить многочлен с рациональными коэффициентами степени меньшей, чем 4, т.е. f(x) – неприводимый над полем рациональных чисел многочлен, а, следовательно, согласно теореме 3, - алгебраическое число 4-й степени.

2) a= и b=, как легко видеть, это алгебраические числа 6-й степени, а произведение ab= - алгебраическое число 3-й степени.

III. Рациональные приближения

алгебраических чисел.

3.1. Теорема Лиувилля.

Алгебраические числа не могут иметь слишком хороших рациональных приближений: погрешность при замене алгебраического числа рациональной дробью не может быть достаточно мала по порядку в сравнении с величиной, обратной знаменателю рациональной дроби.

Для алгебраического числа 1-й степени существует постоянная c>0, такая, что для любой рациональной дроби , отличной от a, будет выполняться неравенство:

(5)

Для алгебраического числа 2-й степени можно подобрать c>0, такое, что для любой рациональной дроби, будет иметь место неравенство:

(6)

В 1844 г., французским математиком Лиувиллем, впервые была доказана общая теорема:

Теорема 5: Для любого действительного алгебраического числа a степени n можно подобрать положительноеc, зависящее только от a, такое, что для всех рациональных чисел (¹a) будет иметь место неравенство:

(7)

Доказательство:

Пусть f(x)=A0xn+ A1xn-1+An неприводимый многочлен с целыми коэффициентами, корнем которого является a. В качестве f(x) можно, например, взять многочлен, получающийся из минимального для a многочлена после умножения всех коэффициентов на наименьшее кратное их знаменателей.

Согласно теореме Безу, имеем:

f(x)=(x-a)g(x), (8)

где g(x) – многочлен с действительными коэффициентами.

Возьмем произвольное d>0. |g(x)| - непрерывная, а следовательно, ограниченная функция от x в сегменте [a-d; a+d], т.е. существует положительное число M, такое, что |g(x)|£M, для всех x из этого сегмента. Обозначим через c=min , так, что и .

Для произвольного рационального числа могут представиться две возможности:

1) лежит вне сегмента |a-dm; a+dm|, тогда

2) удовлетворяет неравенствам:

a-d££a+d, тогда |g()|£M и, подставляя в (8) вместо x значение , получаем:

(9)

Неприводимый над полем рациональных чисел многочлен f(x) степени n³2 не имеет рациональных корней, а при n=1 не имеет корней, отличных от a, так что:

f()=

Поскольку числитель - целое неотрицательное, отличное от нуля, т.е. число большее или равное 1, то (10). Сравнивая неравенства (9) и (10) получаем , так что и в этом случае имеем: . Теорема доказана.

Пример:

Пусть z – неквадратное целое число. Найти c>0, такое, что для всех рациональных чисел имело бы место неравенство:

.

- корень многочлена xa-В. Деля x2-D на x-, находим g(x)=x+.

При -d<x<+d имеем , т.е. M=+d. В качестве c берем , при этом выгодней всего взять d так, что d2+d-1=0, т.е. d=.

При таком d получаем , так что при любых целых a и b имеем: .

3.2. Трансцендентные числа Лиувилля.

Числа, являющиеся корнями уравнений с целыми коэффициентами, не исчерпывают все множество действительных чисел, т.е. существуют действительные числа отличные от алгебраических.

Определение 6: Любое неалгебраическое число называется трансцендентным.

Впервые существование трансцендентных чисел доказано Лиувиллем. Доказательство существования трансцендентных чисел у Лаувилля эффективно; на основе следующей теоремы, являющейся непосредственным следствием теоремы 5, строятся конкретные примеры трансцендентных чисел.

Теорема 6: Пусть a – действительное число. Если для любого натурального n³1 и любого действительного c>0 существует хотя бы одна рациональная дробь , такая, что (11), то a – трансцендентное число.

Доказательство:

Если бы a было алгебраическим, то нашлось бы (теорема 5) целое положительное n и действительное c>0 такие, что для любой дроби было бы , а это противоречит тому, что имеет место (11). Предположение, что a алгебраическое число, т.е. трансцендентное число. Теорема доказана.