Анализ типичных ошибок при решении задач курса школьной математики: уравнения, тригонометрия, планиметрия
Страница 6
Решение:
Преобразуем уравнение следующим образом:
.
Рассмотрим 2 случая:
1. ;
2. ;
Ответ: .
Задача 26.
Решить систему:
Решение:
Каждое из уравнений этой системы является простейшим, поэтому нетрудно заметить, что
Решая последнюю систему, получаем
Ответ: .
Задача 27.
Решить задачу: Основания трапеции 5 дм и 40 см. Найти длину отрезка, соединяющего середины диагоналей.
Решение:
|
Пусть ABCD – трапеция, точка Р – середина диагонали АС, точка К – середина диагонали BD. |
Нетрудно заметить, что точки Р и К лежат на средней линии EF трапеции. Так как ЕК – средняя линия треугольника ABD, то . Аналогично, , поскольку является средней линией треугольника АВС. Следовательно, .
Ответ: 17.5 см.
Задача 28.
Решить задачу: Даны 2 стороны треугольника a, b и медиана , проведенная к стороне c. Найти сторону с.
Решение:
|
Достроим треугольник АВС до параллелограмма АВСК. При этом . По свойству параллелограмма сумма его диагоналей равна сумме его сторон. Поэтому из равенства получаем |
Ответ: .
Задача 29.
Решить задачу: Даны 2 стороны треугольника a, b и медиана , проведенная к стороне c. Найти сторону с.
Решение:
Воспользуемся формулой .
Ответ: .
Задача 30.
Решить задачу: Несколько рабочих выполняют работу за 14 дней. Если бы их было на 4 человека больше и каждый работал в день на 1 час больше, то та же работа была бы сделана за 10 дней. Если бы их было еще на 6 человек больше и каждый работал бы еще на 1 час в день больше, то эта работа была бы сделана за 7 дней. Сколько было рабочих, и сколько часов в день они работали?
Решение:
Пусть w - число рабочих, х – число часов их работы в день. Пусть вся работа равна единице, а у – производительность (в час) каждого рабочего.
Тогда один рабочий за х часов (т.е. в день) выполняет ху единиц работы, а w рабочих за 14 дней выполнят 14wxy единиц работы. Согласно условию 14wxy = 1.
Аналогично, если рабочих стало w + 4, и они работают каждый день х + 1 час, то
10(w + 4)(x + 1)y = 1.
Для случая, когда рабочих еще на 6 человек больше (т.е. w + 6), и они работают еще на час дольше (т.е. х + 1 часа) каждый день, получаем уравнение 7(w + 6)(x + 1)y = 1.
Из системы
надо найти w, x.
Приравняв левые части первого и второго, а также первого и третьего уравнений и упростив, получим систему
Отсюда легко получается, что . Следовательно, второе значение х не подходит. Поэтому получили
Ответ: всего было 54 рабочих; они работали 1,25 часов в день.
3.2. Ответы (протоколы верных решений)
Задача 1.
Решить неравенство: .
Решение:
Найдем корни квадратного уравнения по теореме Виета:
График функции - это парабола, ветви которой направлены вниз:
|
Нужно отметить те значения x, при которых график находится выше оси Ox. Следовательно, получаем ответ: |
Задача 2.
Решить неравенство: .
Решение:
Найдем корни квадратного уравнения по теореме Виета:
График функции - это парабола, ветви которой направлены вниз:
|
Нужно отметить те значения x, при которых график находится выше оси Ox. Следовательно, получаем ответ: |
Задача 3.
Решить неравенство:
Решение:
Корни уравнения : График функции - это парабола, ветви которой направлены вверх.
|
Выберем те значения x, при которых график находится выше оси Ox. Следовательно, получаем ответ: |
Задача 4.
Решить неравенство:
Решение:
Корни уравнения : График функции - это парабола, ветви которой направлены вверх.
|
Выберем те значения x, при которых график находится выше оси Ox. Следовательно, получаем ответ: |
Задача 5.
Решить неравенство:
Решение:
Домножим неравенство на –1, получим: Выделим полный квадрат: В левой части неравенства стоит неотрицательное число, а значит неравенство неверно при любых значениях x, т.е. не имеет решений.