Высшая математика
Страница 4
Т.к. по определению производная функции в точке
вычисляется по формуле
, тогда приращение
в точке
:
.
Следовательно .
Ответ: |
|
Найдите пределы, используя правило Лопиталя: .
.
|
Заданный предел равен |
Написать в точке уравнение касательной плоскости к поверхности, заданной уравнением:
.
Уравнение касательной плоскости к графику функции в точке
имеет вид:
. Поэтому, продифференцируем заданное уравнение поверхности:
. Подставив в полученное уравнение координаты точки
вместо значений переменных, и заменив дифференциалы переменных на их приращения, получим:
.
|
Уравнение касательной плоскости к заданной поверхности в заданной точке |
Найти наибольшее и наименьшее значение функции в области:
.
Т.к. заданная функция дифференцируется в замкнутой ограниченной области, то свое наибольшее/наименьшее значение она достигает или в стационарной точке внутри области дифференцирования, или на границе области.
Найдем стационарные точки заданной функции, для этого решим систему:
, точка
не принадлежит заданной области дифференцирования, значит стационарных точек внутри области нет, следовательно, наибольшее/наименьшее значение функцией достигается на границе области дифференцирования. Граница области ограничена окружностями
и
. Найдем наибольшее/наименьшее значение на границах области дифференцирования. Для этого составим функцию Лагранжа:
1. , тогда
,
, следовательно, система уравнений для определения координат экстремальной точки имеет вид:
Эта система имеет четыре решения:
|
Точка |
|
Точка |
|
Точка |
|
Точка |
2. , тогда
,
,
следовательно, система уравнений для определения координат экстремальной точки имеет вид:
Эта система также имеет четыре решения:
|
Точка |
|
Точка |
|
Точка |
|
В точке |