Гамма функции
Страница 3
и на основании (2.2) имеем
(3.1)
В интеграле
Где k > -1,n > 0,достаточно положить
17
Интеграл
Где s > 0,разложить в ряд
=
где дзетта функция Римана
Рассмотрим неполные гамма функции (функции Прима)
связанные неравенством
Разлагая, в ряд имеем
18
Переходя к выводу формулы Стирлинга , дающей в частности приближенное значение n! при больших значениях n ,рассмотрим предварительно вспомогательную функцию
(3.2)
Непрерывна на интервале (-1,) монотонно возрастает от
до
при изменении
от
до
и обращаются в 0 при u = 0.Так как
то при u > 0 и при u < 0 , далее имеем
И так производная непрерывна и положительна во всем интервале ,удовлетворяет условию
19
Из предыдущего следует, что существует обратная функция, определенная на интервале
непрерывная и монотонно возрастающая в этом интервале,
Обращающаяся в 0 при v=0 и удовлетворяющая условие
(3.3)
Формулу Стирлинга выведем из равенства
полагая ,имеем
Положим далее введенная выше обратная функция, удовлетворяющая условиям u = -1при
,и
при
.Замечая что(см.3.2)
20
имеем
,
полагая на конец ,,получим
или
в пределе при т.е. при
(см3.3)
откуда вытекает формула Стирлинга
которую можно взять в виде
21
(3.4)
где ,при
для достаточно больших полагают
(3.5)
вычисление же производится при помощи логарифмов
если целое положительное число, то
и (3.5) превращается в приближенную формулу вычисления факториалов при больших значениях n
приведем без вывода более точную формулу
где в скобках стоит не сходящийся ряд.
5. Примеры вычисления интегралов 22
Для вычисления необходимы формулы:
Г()
Вычислить интегралы
23
Запорізький державний університет
Зав. каф. Математичного аналізу
д. т. н. проф. С.Ф. Шишканова
_ 2002р.
ГАМА ФУНКЦІЇ
Ст гр 8221-2
Керівник
Ст. викладач
Запоріжжя 2002.
Реферат .4
введение .5
1. Бета функции…………………………………………… 6
2. Гамма функции .9
3. Производная гамма функции 11
4. Вычисление интегралов формула Стирлинга 16
5. Примеры вычеслений 22
вывод 24
Список литературы…………………………………………… 25
Реферат
Обьект иследований: гамма и ее приложения.
В работе идет речь о представлении бета и гамма функций с помощью интегралов Эйлера соответствено первого и второго рода. И о их применении для вычисления интегралов.
Ключевые слова:
ГАММА И БЕТА ФУНКЦИЯ, ИНТЕГРАЛ ЭЙЛЕРА, ПРОИЗВОДНАЯ, ПРЕДЕЛ.
Выделяют особый класс функций, представимых в виде собственого либо несобственого интеграла, который зависит не только от формальной переменной, а и от параметра.