Гамма функции

Гамма функции

1. Бэта-функции 6

Бэта – функции определяются интегралом Эйлера первого рода:

= (1.1)

сходятся при .Полагая =1 – t получим:

= - =

т.e. аргумент и входят в симетрично. Принимая во внимание тождество

по формуле интегрирования почестям имеем

Откуда

= (1.2)

7

При целом b = n последовательно применяя(1.2)

Получим

(1.3)

при целых = m,= n,имеем

но B(1,1) = 1,следовательно:

Положим в (1.1) .Так как график функции симметрична относительно прямой ,то

8

и в результате подстановки ,получаем

полагая в(1.1) ,откуда ,получим

(1.4)

разделяя интеграл на два в пределах от 0 до 1 и от 1 до и применение ко второму интегралу подстановки ,получим

=

2. Гамма-функция9

Гамма функцию определяет интеграл Эйлера второго рода

G(a) = (2.1)

сходящийся при 0.Положим =ty,t > 0 ,имеем

G(a) =

и после замены , через и t через 1+t ,получим

Умножая это равенство и интегрируя по t и пределах от 0 до, имеем:

или на основании (1.4) и после изменения в правой части порядка интегрирования ,получаем:

10

откуда

(2.2)

заменяя в (2,1) ,на и интегрируем по частям

получаем рекурентною формулу

(2.3)

так как

но при целом имеем

(2.4)

то есть при целых значениях аргумента гамма-функция превращается в факториал.Порядок которого на единицу меньше взятого значения аргумента.При n=1 в (2.4) имеем

3. Производная гамма функции 11

Интеграл

сходится при каждом ,поскольку ,и интеграл при сходится.

В области , где - произвольное положительное число, этот интеграл сходится равномерно, так как и можна применить признак Веерштраса. Сходящимся при всех значениях является и весь интеграл так как и второе слогаемое правой части является интегралом, заведомо сходящимся при любом.Легко видеть что интеграл сходится пов любой области где произвольно.Действительно для всех указаных значений и для всех ,и так как сходится, то выполнены условия признака Веерштрасса. Таким образом , в области интеграл cходится равномерно.

Отсюда вытекает непрерывность гамма функции при.Докажем дифференцируемость этой функции при .Заметим что функция непрерывна при и, и покажем ,что интеграл :