Гамма функции
Гамма функции
1. Бэта-функции 6
Бэта – функции определяются интегралом Эйлера первого рода:
= (1.1)
сходятся при .Полагая =1 – t получим:
= - =
т.e. аргумент и входят в симетрично. Принимая во внимание тождество
по формуле интегрирования почестям имеем
Откуда
= (1.2)
7
При целом b = n последовательно применяя(1.2)
Получим
(1.3)
при целых = m,= n,имеем
но B(1,1) = 1,следовательно:
Положим в (1.1) .Так как график функции симметрична относительно прямой ,то
8
и в результате подстановки ,получаем
полагая в(1.1) ,откуда ,получим
(1.4)
разделяя интеграл на два в пределах от 0 до 1 и от 1 до и применение ко второму интегралу подстановки ,получим
=
2. Гамма-функция9
Гамма функцию определяет интеграл Эйлера второго рода
G(a) = (2.1)
сходящийся при 0.Положим =ty,t > 0 ,имеем
G(a) =
и после замены , через и t через 1+t ,получим
Умножая это равенство и интегрируя по t и пределах от 0 до, имеем:
или на основании (1.4) и после изменения в правой части порядка интегрирования ,получаем:
10
откуда
(2.2)
заменяя в (2,1) ,на и интегрируем по частям
получаем рекурентною формулу
(2.3)
так как
но при целом имеем
(2.4)
то есть при целых значениях аргумента гамма-функция превращается в факториал.Порядок которого на единицу меньше взятого значения аргумента.При n=1 в (2.4) имеем
Интеграл
сходится при каждом ,поскольку ,и интеграл при сходится.
В области , где - произвольное положительное число, этот интеграл сходится равномерно, так как и можна применить признак Веерштраса. Сходящимся при всех значениях является и весь интеграл так как и второе слогаемое правой части является интегралом, заведомо сходящимся при любом.Легко видеть что интеграл сходится пов любой области где произвольно.Действительно для всех указаных значений и для всех ,и так как сходится, то выполнены условия признака Веерштрасса. Таким образом , в области интеграл cходится равномерно.
Отсюда вытекает непрерывность гамма функции при.Докажем дифференцируемость этой функции при .Заметим что функция непрерывна при и, и покажем ,что интеграл :