Геометрия

Страница 3

Перейдём теперь к наглядному истолкованию «материальных точек». Материальную точку (А, т) при любом т (положительном, отрицательном или равном нулю) мы можем наглядно представлять в виде шарика, размерами которого можно пренебречь, помещённого в точке А и имеющего подводный вес т.

Значит, то число т, которое мы условились называть «массой» материальной точки, мы истолковываем, как «подводный вес шарика». При т>0 мы материальную точку (А, т) наглядно представляем в виде шарика, тонущего в воде (например, железного). При т<0 соответственно, всплывающего на поверхность воды (например, пробкового), а при т=0 — из пластмассы — с таким же удельным весом, что и у воды. В воде он будет невесомым. Будучи помещён в какой-либо точке, он под действием силы тяжести и выталкивающей силы воды останется на месте.

Если будет идти речь о двух материальных точках, то мы их можем себе наглядно представлять нанизанными на тонком прямолинейном стержне, изготовленном из той же «невесомой» (в воде) пластмассы, о которой мы говорили выше. Ниже мы будем говорить о центре тяжести двух материальных точек. Практически этот центр тяжести можно наглядно представить как точку, в которой нужно подпереть или за которую нужно подвесить невесомый (в воде) стержень для того, чтобы он вместе с нанизанными на нём «материальными точками» оказался в безразличном равновесии.

Всегда ли найдётся такая точка на этом стержне между этими двумя «материальными точками»? Не может ли она оказаться вне отрезка, соединяющего данные материальные точки? Не может ли случиться, что такой точки вовсе нет? Это мы выясним ниже.

Аналогичным образом можно себе представить центр тяжести любого числа материальных точек.

Встречающееся ниже понятие «объединение нескольких материальных точек» можно наглядно истолковать как равнодействующую подводных весов всех тех шариков, которые наглядно изображают эти материальные точки.

Иногда полезно дать более широкое наглядное толкование понятия материальной точки с произвольной вещественной «массой».

A B C D

рис. 5

Сделаем одно предварительное замечание. На каждой прямой мы можем выбрать положительное направление и единицу масштаба. Если это уже сделано, то прямую иногда называют осью.

Каждый отрезок (скажем, АВ) можно рассматривать как направленный, причём сначала мы называем начало отрезка (А), а затем — его конец (В); направление отрезка — от А к В. Если отрезок лежит на оси (или параллелен ей), то его направление может:

1) совпадать с направлением оси;

2) быть противоположным направлением оси.

В первом случае мы величиной отрезка называем его длину; во втором случае величиной отрезка мы называем его длину, взятую со знаком минус (-).

Таким образом, величина отрезка, лежащего на какой-нибудь оси, или параллельного оси — это его длина, взятая со знаком плюс или минус, в зависимости от того, будут ли направление отрезка и оси одинаковы или противоположны. Величину отрезка АВ будем обозначать так: АВ.

В нашем примере (рис. 5) АВ=3, DC= -2, ВА= -3. Вообще АВ= -ВА.

Вернёмся теперь к вопросу о возможном физическом истолковании материальных точек с произвольными вещественными массами.

Мы будем представлять, что в пространстве произвольным образом выбрана какая-либо ось l. Материальную точку (А, т) можно наглядно истолковать как силу, параллельную оси l и приложенную к точке А.

Число т («масса») характеризует абсолютную величину (или, как говорят иногда, «напряжение») и направление этой силы: сила и ось одинаково направлены, если т>0, и противоположно направлены, если т<0; по абсолютной величине сила равна ½т½ (единицам силы). Если т=0, то сила равна нулю. Материальную точку вида (А, 0) можно назвать «незагруженной точкой» или «нулевой силой».

А

С

В

рис. 6

Когда будем ниже говорить о «центре тяжести нескольких материальных точек», то его можно себе наглядно представлять как центр параллельных сил, а «объединение нескольких материальных точек» — как равнодействующую нескольких параллельных сил, приложенную в центре параллельных сил.

Для геометрических приложений важно, что почти всё основное, что мы говорили относительно материальных точек с положительными массами, возможно обобщить на случай материальных точек с произвольными вещественными массами.

Понятие центра тяжести двух материальных точек (с произвольными вещественными массами) можно ввести так.

Центром тяжести двух материальных точек (А, а) и (B, b) (рис. 6) называется такая точка С, лежащая на оси АВ (положительное направление от А к В), которая удовлетворяет условию: а×АС=b×СВ.

А

В

С

рис. 7

Центр тяжести С двух материальных точек (А, а) и (B, b) будет лежать между А и В, лишь если «массы» а и b одного знака. Если а и b разных знаков, то С вне отрезка АВ (рис. 7).

Лишь в одном случае центр тяжести материальных точек (А, а) и (B, b) с различными носителями (А¹В) не существует, — именно, когда массы их противоположны по знаку, но не равны по абсолютной величине (то есть, если а = -b ¹ 0). В связи с этим мы будем называть две материальные точки вида (А, а) и (В, -а) (А¹В, а¹0) механической парой.

Этот случай можно себе представить как предельный для того случая, когда а¹-b, но а® -b. Если а¹-b, а¹0, b¹0, то можно написать , т.е. . Если а ® -b, то а + b ® 0 и, следовательно, АС ®¥, то есть точка С неограниченно удаляется вдоль прямой АВ. Поэтому иногда говорят, что если a = -b, то центр тяжести двух материальных точек (А, а) и (B, b) «лежит в бесконечно удалённой точке прямой АВ».

Оставаясь здесь в рамках элементарной геометрии, мы будем эту фразу рассматривать как образное выражение того, что центра тяжести в данном случае нет.

Если одна из двух материальных точек является незагруженной, а «масса» другой материальной точки отлична от нуля, то их центр тяжести совпадает с носителем загруженной точки. В связи с этим имеет смысл все незагруженные точки считать равными, то есть считать, что при любых А и В ( А, 0) ºº (В, 0).

Задача о нахождении центров тяжести двух незагруженных точек является неопределенной: существует бесконечно много точек, которые можно рассматривать в качестве центров тяжестей этих двух точек. Мы не будем останавливаться на рассмотрении этого случая.