Дискретная математика (Конспекты 15 лекций)

Страница 7

- Конъюнктор

- Дизъюнктор

- И

 
нвертор

Чтобы построить минимальную функциональную схему для функции на конъюнкторах, дизъюнкторах и инверторах, которая реализует эту функцию, нужно

1. Найти минимальную ДНФ.

2. Для любой из минимальных ДНФ (их может быть много) попробовать упростить формула с помощью вынесения за скобки общего множителя.

Сумматор n-разрядных двоичных чисел

Составить элементы с 2n входами и n+1 выходом, реализующих сложение n-разрядных двоичных чисел вида

X = XnXn-1…X1

Y = YnYn-1…Y1

Z = x+y = Zn+1Zn…Z1

X+Y – сумма чисел.

Для решения такой задачи вводим qi – единица переноса из одного разряда в другой.

Формулы сумматора

Zi = Xi + Yi + Qi – сумма по модулю 2

Qi+1 = XiYi V XiQi V QiYi

Лекция 11

Графы

Графом (G) будем называть тройку объектов (V, X, q)

V – множество n вершин.

X – конечное множество ребер.

q - функция инцидентности, которая каждому элементу множества X ставит в соответствие пару элементов из множества V.

q задана на множестве X.

Если в значении функции инцидентности допускается перестановка вершин, то граф называется неориентированным. В противном случае граф называется ориентированным (Орграф).

Vj – начало ребра

Vk – его конец

q(xi) = (Vj, Vk) – ребро инцидентно в вершине Vj и в вершине Vk.

Если одной и той же паре вершин инцидентно несколько ребер, то ребра называются кратными.

Если на ребре xi0

q(x0) = (Vj0, Vj0),

то ребро называется петлей.

Способы задания графов

1. Аналитический

Если вершине не инцидентно никакое ребро, то эта вершина называется изолированной.

Выписываются все ребра и пишутся напротив две пары вершин, которым они инцидентны.

В конце выписываются все изолированные вершины.

2. Геометрический

Каждая вершина графа задается точкой. А ребра, инцидентные паре вершин – кривой.

Желательно рисовать кривые без пересечения. Если пересечения существуют, то их надо отличать от вершин.

3. С помощью матрицы инцидентности

A(m*n)

m = [V] – число вершин

n = [X}- число ребер

а) Неориентированные графы

Aij = {0, если Vi не инцидентно xj, 1, если Vi инцидентно xj)

б) Орграфы

Aij = {0, если Vi не инцидентно xj, -1, если Vi - начало xj, 1, если Vi - конец xj)

Для петель нужны дополнительные предположения.

4. Матрица смежности (задается одинаково для всех графов)

B(m*m) m = [V]

Bij равно числу ребер, инцидентных паре вершин (oi, oj)

Если граф не ориентирован, то матрица симметрична.

Граф, в котором нет кратных ребер и петель, называется простым.

Простой граф называется полным, если любой паре его вершин инцидентно одно ребро.

Дальше все о неориентированных графах.

K1 – полный граф с одной вершиной

K2 – с двумя

K3 – с тремя

K4 – полный граф с четырьмя вершинами

K5 – полный пятивершинник

Граф называется двудольным, если множество вершин разбивается на 2 непересекающихся подмножества, такие, что ребра соединяют вершины из разных подмножеств.

Двудольный граф называется полным, если каждая вершина одного подмножества соединена ребром с каждой вершиной другого подмножества.

Полный двудольный граф.

Маршруты, циклы, связности.

Маршрутом в графе называется чередующаяся последовательность вершин и ребер, начинающаяся и заканчивающаяся вершинами, такую, что каждое ребро в нем соединяет только те вершины, между которыми оно стоит.

Будем говорить, что этот маршрут соединяет первую и последнюю вершину. Если существует маршрут, то последняя вершина называется достижимой из первой вершины.

Маршрут, в котором нет повторяющихся ребер, называется цепью.

Маршрут, в котором нет повторяющихся вершин (кроме первой и последней), называется простой цепью.

Если в простой цепи первая и последняя вершины совпадают, то она называется циклом.

Граф называется связным, если любая вершина достижима из любой другой вершины. В противном случае граф называется несвязным. Несвязный граф распадается на несколько частей, каждая из которых является связным графом.

Эти части называются компонентами связности.

Ребро называется циклическим, если оно входит хотя бы в один цикл графа. В противном случае ребро называется ациклическим.

Утверждение.

Если из связного графа удалить циклическое ребро, то вновь полученный граф останется связным, а если удалить ациклическое ребро, то граф распадется на два компонента связности.

Связный граф, у которого все ребра ациклические, называется деревом.

Несвязный граф, компонентами связности которого являются деревья, лесом.

Свойства деревьев.

1. Чтобы простой связный граф был деревом, необходимо и достаточно, чтобы число вершин было больше числа ребер на один.

2. Чтобы граф был деревом, необходимо и достаточно, чтобы любые две вершины его соединялись единственным маршрутом.

3. Граф будет деревом тогда и только тогда, когда добавление любого нового ребра приводит к появлению ровно одного цикла.

Лекция 12

Эйлеровы графы

Дан граф. Требуется найти в нем маршрут, проходящий по каждому ребру ровно один раз. Начало и конец – в одной вершине.

Такой маршрут называется Эйлеровым циклом, а граф, в котором он существует, называется Эйлеровым графом.

Степень вершины в графе – это число ребер, инцидентных этой вершине.

Критерий эйлеровости графа.

Для того, чтобы связный граф без петель был Эйлеровым, необходимо и достаточно, чтобы степень его вершины была четным числом.