Балансовая модель
Страница 2
Будем исходить из заданного ассортиментного вектора У = ( y1 , y2 , … , yn ) и определять необходимый для его производства вектор-план Х = ( х1 , х2 , … хn ).
Проиллюстрируем вышеизложенное на примере предельно упрощенной системы, состоящей из двух производственных отраслей:
табл.2
№ отрас Потребление Итого Конечный Валовый
№ затрат продукт выпуск
отрас 1 2
0.2 0.4
1 100 160 260 240 500
0.55 0.1
2 275 40 315 85 400
Итого затрат 575
в k-ю 375 200
отрасль … 575
Пусть исполнение баланса за предшествующий период характеризуется данными, помещенными в табл.2
Рассчитываем по данным этой таблицы коэффициенты прямых затрат:
100 160 275 40
а11 = –––– = 0.2 ; а12 = –––– = 0.4 ; а21 = –––– = 0.55 ; а22 = –––– = 0.1
500 400 500 400
Эти коэффициенты записаны в табл.2 в углах соответствующих клеток.
Теперь может быть записана балансовая модель ( 6 ), соответствующая данным табл.2
х1 - 0.2х1 - 0.4х2 = у1
х2 - 0.55х1 - 0.1х2 = у2
Эта система двух уравнений может быть использована для определения х1 и х2 при заданных значениях у1 и у2, для использования влияния на валовый выпуск любых изменений в ассортименте конечного продукта и т.д.
Так, например, задавшись у1=240 и у2=85, получим х1=500 и х2=400, задавшись у1=480 и у2=170, получим х1=1000 и х2=800 и т.д.
РЕШЕНИЕ БАЛАНСОВЫХ УРАВНЕНИЙ
С ПОМОЩЬЮ ОБРАТНОЙ МАТРИЦЫ.
КОЭФФИЦИЕНТЫ ПОЛНЫХ ЗАТРАТ.
Вернемся снова к рассмотрению балансового уравнения ( 6 ).
Первый вопрос, который возникает при его исследование, это вопрос о существование при заданном векторе У>0 неотрицательного решения х>0, т.е. о существовании вектор-плана, обеспечивающего данный ассортимент конечного продукта У. Будем называть такое решение уравнения ( 6' ) допустимым решением.
Заметим, что при любой неотрицательной матрице А утверждать существование неотрицательного решения нельзя.
Так, например, если
0.9 0.8 0.1 -0.8 и уравнение ( 6' )
А= , то Е - А =
0.6 0.9 -0.6 0.1
запишется в виде 0.1 -0.8 х1 у1 или в развернутой форме
-0.6 0.1 х2 у2
0.1х1 - 0.8х2 = у1 ( a )
-0.6х1 + 0.1х2 = у2
Сложив эти два уравнения почленно, получим уравнение
-0.5х1 - 0.7х2 = у1 + у2,
которое не может удовлетворяться неотрицательным значениям х1 и х2, если только у1>0 и у2>0 ( кроме х1=х2=0 при у1=у2=0 ).
Наконец уравнение вообще может не иметь решений ( система ( 6 ) – несовместная ) или иметь бесчисленное множество решений ( система ( 6 ) – неопределенная ).
Следующая теорема, доказательство которой мы опускаем, дает ответ на поставленный вопрос.
Теорема. Если существует хоть один неотрицательный вектор х>0, удовлетворяющий неравенству ( Е - А )·х>0, т.е. если уравнение ( 6' ) имеет неотрицательное решение x>0, хотя бы для одного У>0, то оно имеет для любого У>0 единственное неотрицательное решение.
При этом оказывается, что обратная матрица ( Е - А ) будет обязательно неотрицательной.
Из способа образования матрицы затрат следует, что для предшествующего периода выполняется равенство ( Е -А )·х' = У', где вектор-план х' и ассортиментный вектор У' определяются по исполненному балансу за прошлый период, при этом У'>0. Таким образом, уравнение ( 6' ) имеет одно неотрицательное решение x>0. На основании теоремы заключаем, что уравнение ( 6' ) всегда имеет допустимый план и матрица ( Е - А ) имеет обратную матрицу.
Обозначив обратную матрицу ( Е - А )-1 через S = || sik+ ||, запишем решение уравнения ( 6'' ) в виде
_ _
х = S·У ( 7 )
Если будет задан вектор – конечный продукт У и вычислена матрица S = ( E - A )-1, то по этой формуле может быть определен вектор-план х.
Решение ( 7 ) можно представить в развернутой форме:
x1 = S11y1 + S12y2 + … + S1nyn
x2 = S21y1 + S22y2 + … + S2nyn ( 8 )
………………………………
xn = Sn1y1 + Sn2y2 + … + Snnyn
ПОЛНЫЕ ВНУТРИПРОИЗВОДСТВЕННЫЕ
ЗАТРАТЫ.
Выясним экономический смысл элементов Sik матрицы S.
Пусть производится только единица конечного продукта 1-й отрасли, т.е.
1
_ 0
У1 = :
0
Подставляя этот вектор в равенство ( 7 ), получим
1 S11
_ 0 S21 _
х = S : = : = S1
0 Sn1 0
_ 1
задавшись ассортиментным вектором У2 = 0 , получим
:
0
0 S12
_ 1 S22 _
х = S : = : = S2
0 Sn2
Аналогично, валовый выпуск х, необходимый для производства единицы конечного продукта k-й отрасли, составит
0 S1k
_ : S2k _
х = S 1 = : = Sk , ( 9 )
: Snk
0
т.е. k-й столбец матрицы S.
Из равенства ( 9 ) вытекает следующее:
Чтобы выпустить только единицу конечного продукта k-й отрасли, необходимо в 1-й отрасли выпустить х1=S1k, во 2-й х2=S2k и т.д., в i-й отрасли выпустить xi=Sik и, наконец, в n-й отрасли выпустить xn=Snk единиц продукции.
Так при этом виде конечного продукта производства только единица k-го продукта, то величины S1k, S2k, …, Sik, …, Snk, представляют собой коэффициенты полных затрат продукции 1-й, 2-й и т.д., n-й отраслей идущей на изготовление указанной единицы k-го продукта. Мы уже ввели раннее коэффициенты прямых затрат a1k, a2k, …, aik, …, ank на единицу продукции k-й отрасли, которые учитывали лишь ту часть продукции каждой отрасли, которая потребляется непосредственно k-й отраслью. Но, очевидно, необходимо обеспечить замкнутый производственный цикл. Если бы продукция i-й отрасли поступала бы только в k-ю отрасль в количестве aik, то производство k-й отрасли все равно не было бы обеспеченно, ибо потребовалось еще продукты 1-й отрасли ( a1k ), 2-й отрасли (a2k ) и т.д. А они в свою очередь не смогут работать, если не будут получать продукцию той же i-й отрасли ( ai1, ai2, … и т.д.). Проиллюстрируем сказанное на примере табл.2
Пусть нас не интересует выпуск для внешнего потребления продукции 2-й отрасли ( k=2 ) и мы хотим определить затраты продукции 1-й отрасли на единицу этой продукции. Из табл.2 находим, что на каждую единицу продукции 2-й отрасли ( х2=1 ) затрачивается: продукции 1-й отрасли a12=0.4 и 2-й отрасли a22=0.1.