Жаростойкие и жаропрочные никелевые сплавы, применяемые в авиационных двигателях, и их термическая обработка

Страница 3

Штамповка до термической обработки сообщает дискам текстуру деформации, которая связана с дендритным характером кристаллизации слитков и неодинаковой пластической деформацией различных участков заготовок дисков. Увеличение количества g'-фазы усиливает текстуру деформации дисков, ухудшает технологичность. Современные сплавы для дисков содержат до 60% упрочняющей g¢-фазы. При высоком содержании g¢-фазы усиливается неоднородность её распределения, возникает глубокая разнозернистость. Поэтому перед закалкой проводят отжиг при температурах 900-1100°С для повышения однородности зёрен.

Для получения оптимальной структуры и необходимых свойств диски подвергаются закалке и старению.

Марка стали

Термическая обработка

Механические свойства

Tэксп, °С

s100750, МПа

d, %

KCU, МДж/м2

ХН77ТЮР (ЭИ437БУ)

Закалка с 1080°С, 8 ч на воздухе. Старение при 750°С, 16 ч.

350

15

0,5

700

ХН73МБТЮ (ЭИ698)

Первая закалка с 1120°С, 2 ч на воздухе. Вторая закалка с 1000°С, 3 ч на воздухе. Старение при 800°С, 8 ч.

420

17

0,5

750

ХН62БМКТЮ (ЭП742)

Первая закалка с 1150°С, 8 ч на воздухе. Вторая закалка с 1050°С, 4 ч на воздухе. Старение при 850°С, 8 ч.

520

20

0,5

800

ЭП975

Закалка с 1200°С, 8 ч на воздухе. Старение при 900°С, 8 ч.

750

14

0,45

850

Более высокая жаропрочность сплавов ЭП742 и ЭП975 обусловлена снижением содержания хрома до 8-10% и введением вольфрама, молибдена, кобальта, увеличением количества g¢-фазы до 60%. В сплаве ЭП975 суммарное содержание (W+Mo)=10-12%, а (Al+Ti)=7,5%. При увеличении суммарного содержания g¢-фазы до 60% в структуре появляется неравновесная (g-g¢)-эвтектика, поэтому нагрев при закалке производится ступенчато, чтобы избежать оплавления эвтектики. Охлаждение дисков при закалке проводят в масле или сжатым воздухом.

Двойную закалку применяют для улучшения вязкости и пластичности сплавов. При первой закалке обеспечивается достаточно полное растворение упрочняющих фаз, гомогенизация сплава. При нагреве под повторную закалку по границам зерен выделяются и коагулируют частицы карбидов, происходит частичный распад пересыщенного твердого раствора с образование достаточно крупных частиц g¢-фазы. Карбиды выделяющиеся при 1000-1050°С, равномерно распределяются по объёму. При отсутствии второй закалки однократная закалка со старением приводит к образованию по границам зерен сплошной карбидной сетки, которая снижает пластичность.

При старении происходит дополнительное выделение частиц g¢-фазы и упрочнение сплавов. Наличие небольшого количества сравнительно крупных сферических частиц g¢-фазы, сформированных во время нагрева под вторую закалку, и мелкодисперсных выделений частиц g¢-фазы, выделевшихся при старении, обеспечивает максимальную долговечность дисков из сплавов ЭИ698 и ЭП742.

Окончательная структура сплавов состоит из g-твердого раствора, g¢-фазы и карбидов.

Существенное расширение возможностей дальнейшего легирования сплавов для дисков обеспечивает использование металлургии гранул, когда подавляется развитие ликвации, уменьшаются размеры выделений первичной g¢-фазы и карбидов, повышается технологичность и экономичность использования металла. Размеры гранул обычно составляют 0,02-0,4 мм.

При распылении сплавов на гранулы достигается очень высокая (до 106 °С с-1) скорость кристаллизации, из грубой дендритной она становится зеренной без видимых с увеличением до 40000 частиц выделений g¢-фазы, измельчаются и частицы карбидов.

Компактирование дисков производится при температуре закалки сплавов в газостатах. Технология прессования дисков из порошков требует тщательной очистки среды от кислорода, паров воды и других примесей. Наличие пленок (Al2O3, TiO2, TiC) на поверхности гранул ускоряет разрушения. Углерод не должен соприкасаться с атмосферой на всех этапах технологий получения дисков.

В авиатехнике для изготовления валов, дисков, лабиринтов широко применяется диспергированный сплав ЭП741П. Термическая обработка дисков из диспергированных сплавов аналогична деформируемым.

Применение в металлургии гранул обеспечивает повышение коэффициента использования металла, более высокую прочность и уменьшение массы конструкции.

Следует отметить, что в процессе эксплуатации в ступицах и ободе дисков накапливается значительная локальная пластическая деформация, возникают микротрещины. В ободе происходит дополнительное выделение g¢-фазы. В итоге снижается сопротивление малоцикловой усталости.