Аналогии в курсе физики средней школы

Страница 10

Рис.2.

Сплошная латунная шайба К. с утолщенным ободом надета на стальную ось А, вокруг которой она может вращаться внутри латунного кольца . Если намотать на ось шнурок и бы­стро потянуть его, то шайба придет в быстрое вращение. При­лив D на кольце R имеет снизу углубление, которым весь волчок может быть надет на стальное острие штатива. Если при этом не поддерживать прибор рукой, то он под действием силы тяже­сти опрокинется и упадет. Если же, прежде чем убрать руку, привести прибор во вращение, то ось волчка с его кольцами как бы повиснет в горизонтальном положении, причем вся система будет поворачиваться вокруг вертикальной оси штатива. Это вращение получило название прецессии. Прецессия возникла как результат действия силы тяжести и стремления вращающегося волчка сохранять направление оси.

В 1852 г. французский физик Фуко обнаружил, что горизон­тальная ось вращающегося волчка устанавливается в направле­нии север — юг, подобно магнитной стрелке компаса. С той раз­ницей, что ось волчка устанавливается в плоскости географиче­ского меридиана, а стрелка компаса в плоскости магнитного ме­ридиана, который, как известно, не совпадает с географическим.

Объясним это удивительное свойство волчка. Для простоты представим, что наш гироскоп расположен на экваторе в точке А (рис. 3), причем его ось ориентирована с востока на запад. Так как Земля вращается, то через некоторое время точ­ка А перейдет из положения 1 в положение 2. Ось гироскопа, как мы знаем, стремится сохранить прежнее направление, но действие силы тяжести приводит ее снова в горизонтальное по­ложение. Совместное действие силы тяжести и вращения вызы­вает прецессию. Ось поворачивается до тех пор, пока не устано­вится параллельно земной оси, в плоскости меридиана с севера на юг. После этого прецессия прекращается, так как при про­должающемся вращении Земли ось гироскопа будет перемещать­ся параллельно самой себе, а прецессия наблюдается при попыт­ке изменить направление оси. Все вращающиеся тела, например маховые колеса двигателей, стремятся повернуть свои оси по на­правлению к Полярной звезде.

A 1

экватор

2

Рис.3.

Тысячелетиями люди удивлялись чудесным свойствам магни­та, но не могли разгадать его тайну, так как не знали законов волчка и строение атома.

Первое научное сочинение о магнетизме принадлежит англий­скому врачу Гильберту, написавшему в 1600 г. книгу «О магни­те, магнитных телах и большом магните—Земле». Здесь впер­вые уточняется понятие полюсов магнита, а также делается по­пытка понять строение магнита: если разделить магнит на части, то получится множество маленьких магнитов. Следовательно, магнит состоит из множества маленьких магнитиков.

Только в 1785 г. французский военный инженер Кулон, используя изобретенныеим крутильные весы, исследовал взаимо­действие магнитных полюсов и доказал, что оно подчинено зако­ну обратных квадратов, расстояния.

Однако природа магнита продолжала оставаться таинствен­ной. Только аналогия притяжения и отталкивания магнитных полюсов и электрических зарядов наводила на мысль о родстве этих двух явлений. Лишь после обнаружения Эрстедом на опыте действия электрического тока на магнитную стрелку и уточне­ния Ампером законов этого, действия мысль о взаимосвязи элект­ричества и магнетизма была подтверждена. Ампер выдвинул теорию, по которой магнит состоит из маленьких, элементарных круговых токов, но круговой ток. как известно, обладает магнит­ными полюсами (рис. 4). Фарадей и Максвелл разработали учение о магнитном поле.

N

S

Рис.4.

Еще Фарадей установил, что все вещества можно разделить. на две группы — парамагнитных и диамагнитных веществ и что нет материалов, безразличных к магнетизму. Правда, магнитные свойства большинства тел очень слабо выражены и для их обна­ружения приходится воздействовать очень сильными магнитны­ми полями на маленькие и легкие образцы исследуемых мате­риалов. Подвешивая стержень из висмута между полюсами силь­ного электромагнита, можно увидеть, что стержень устанавли­вается перпендикулярно направлению линий индукции магнитного поля, тогда как стержень из алюминия располагается параллельно этим линиям. Висмут диамагнитен, алюминий пара­магнитен (в переводе с греческого пара — значит вдоль, диа — поперек, через).

Лишь в наши дни явления диа- и парамагнетизма получили свое объяснение в электронной теории. Начнем с диамагнетиз­ма. Его происхождение связано с движением электронов вокруг ядра атома по орбите (назовем это движение орбитальным). Электрон, обращающийся вокруг ядра, можно уподобить волчку, и подобно тому как поле тяготения вызывает прецессию волчка, противодействующую силе тяжести, так внешнее магнитное поле вызывает прецессию вращающегося вокруг ядра электрона, про­тиводействующую магнитному полю. Так как в любом атоме лю­бого вещества происходит орбитальное движение электронов, то диамагнетизм свойствен всем видам вещества. Но диамагнитные свойства очень слабы и во многих случаях они перекрываются парамагнитными свойствами. От чего же зависят парамагнитные свойства? Дело в том, что, кроме орбитального движения, элект­ронам присуще еще и вращательное движение вокруг их собст­венной оси. Для наглядности принято сравнивать движение электрона вокруг собственной оси с движением Земли вокруг оси (при одновременном ее движении по орбите вокруг Солнца). Таким образом, электрон уподобляется волчку, и его движение получило название «спин» (от английского глагола to spin — запускать волчок). Надо при этом иметь в виду, что это всего лишь полезный, наглядный образ. Современная физика отказа­лась от представления об электроне, как о каком-то вращающем­ся шарике, однако спин все-таки существует, и мы будем поль­зоваться этим наглядным образом электрона-волчка, обладаю­щего магнитными свойствами.

В зависимости от направления вращения условно различают положительный спин и отрицательный. Два спина с противоположными знаками друг друга «нейтрализуют» (рис. 5).

S

N

N N