Биогеоценоз

Страница 2

Цепи питания. Перенос энергии от ее источника (растений) через ряд организмов называют пищевой цепью. Все живые ор­ганизмы связаны между собой энергетическими отношениями, поскольку являются объектами питания других организмов. Тра­воядные животные (потребители первого порядка) поедают рас­тения, первичные хищники (потребители второго порядка) поеда­ют травоядных, вторичные хищники (потребители третьего по­рядка) поедают хищников помельче. Таким образом, создаются пищевые цепи из продуцентов и консументов, которые на разных этапах, смыкаются с сообществом редуцентов (рис. 3).

Пищевые цепи разделяют на два типа. Один тип пищевой це­пи начинается с растений и идет к растительноядным животным и далее к хищникам. Это так называемая цепь выедания (паст­бищная). Другой тип начинается от растительных и животных остатков, экскрементов животных и идет к мелким животным и микроорганизмам, которые ими питаются. В результате дея­тельности микроорганизмов образуется полуразложившаяся масса — детрит. Такую цепь называют цепью разложения (детритной).

На суше пищевые цепи первого типа состоят обычно из 3— 5 звеньев, например: растения -> овца ->- человек — трехзвенная цепь; растения -*- кузнечики -»- ящерицы -»- ястреб — четырехзвенная цепь; растения -»- кузнечики -v лягушки-»- змеи -»--»- орел — пятизвенная цепь. Через пищевые цепи биогеоценозов суши подавляющее количество прироста растительной биомассы поступает через опад в цепи разложения.

В морях распространены такие типы цепей: фитопланктон ->- рыбы -»- хищные птицы; фитопланктон ->- мелкие ракообраз­ные-»-рыбы, питающиеся мелкими рачками и ракообразны­ми -»- хищные рыбы ->- хищные птицы. В водных сообществах большая часть биомассы, накопленной одноклеточными водорос­лями, проходит через цепь выедания и значительно меньшая включается в цепь разложения (рис. 4).

Рис. 3. Пищевые цепи в наземных экосистемах

Все типы пищевых цепей всегда существуют в сообществе та­ким образом, что член одной цепи является также членом дру­гой. Соединение цепей образует пищевую сеть экосистемы. Угне­тение или разрушение любого звена экосистемы с неизбежно­стью отразится на экосистеме в целом. Поэтому вмешиваться в жизнь экосистем надо с большой осторожностью и осмотри­тельностью.

Экологическая пирамида. Пищевые сети внутри каждой эко­системы имеют хорошо выраженную структуру. Она характери­зуется количеством и размером организмов на каждом уровне цепи питания. При переходе с одного пищевого уровня на другой численность особей уменьшается, а их размер увеличивается. Например, в приведенной выше четырехзвенной цепи на 1 га травяной экосистемы насчитывается около 9 млн. растений (первый пищевой уровень), свыше 700 тыс. растительноядных насе­комых (второй уровень), больше 350 тыс. хищных насекомых и пауков (третий уровень) и всего три птицы (четвертый уровень). Как мы видим, образуется пирамида чисел, основание которой в 3 млн. раз шире, чем вершина.

Только часть энергии, поступившей на определенный уровень биоценоза, передается организмам, находящимся на более высо­ком пищевом уровне. С уровня на уровень переходит около 10% энергии. Можно подсчитать, что энергия, которая доходит до пя­того уровня (например, до орла в цепи: растения — кузнечики —»- лягушки - змеи -»- орел), составляет всего 0,01% энергии, по­глощенной продуцентами. Таким образом, оказывается, что пе­редача энергии с одного пищевого уровня на другой происходит с очень малым КПД. Это объясняет уменьшение числа и массы

Рис. 4. Пищевые цепи в океане

Способность организмов переносить неблагоприятные усло­вия и высокий потенциал размножения обеспечивают сохранение популяций в экосистеме, что гарантирует ее устойчивость.

Саморегуляция . Поддержание определенной численности по­пуляций основано на взаимодействии организмов в звеньях хищ­ник — жертва, паразит — хозяин на всех уровнях пищевых це­пей. Если по каким-либо причинам один из членов пищевых це­пей исчезает, то виды, питавшиеся в основном исчезнувшим видом, начинают в большем количестве поедать ту пищу, кото­рая раньше была для них второстепенной. Вследствие подобной замены пищи численность видов-потребителей сохраняется.

Массовое размножение вида в биогеоценозе регулируется прямыми и обратными связями, существующими в пищевых це­пях. Нередко благодаря хорошим погодным условиям создается высокий урожай растений, которыми питается определенная по­пуляция травоядных животных. В связи с хорошим питанием численность популяции возрастает. Травоядные сами могут быть пищей для хищников. Чем многочисленнее жертвы, тем более обеспечен едой хищник и тем интенсивнее он размножается. Сле­довательно, чем больше в нынешнем году жертв, тем больше на следующий год будет хищников. Возрастание количества хищни­ков приводит к снижению численности жертв. Снижение числен­ности жертв ведет к тому, что размножение хищника замедляет­ся и количество хищника и жертвы возвращается к нормально­му — исходному соотношению.

Колебания количества растительной пищи, травоядных жи­вотных и хищников, питающихся этими животными, сопряжены друг с другом. Классический пример — циклы изменения чис­ленности леммингов в тундре. Раз в несколько лет на огромной территории тундры их численность резко возрастает, вслед за тем, часто за один сезон, столь же резко падает. В соответствии с этим численность песцов, лис и сов, питающихся леммингами, либо увеличивается, либо уменьшается.

Колебания численности леммингов связаны с их кормовой ба­зой. В годы повышения численности леммингов они сильно объ­едают растительность. Большое количество частей растений, со­держащих питательные элементы, поступает в детрит. На следу­ющий год из-за значительного повреждения растительного по­крова пищи становится меньше и питательная ценность ее уменьшается. В связи с этим рост и выживание молодых лем­мингов снижается. Год становится малокормным для хищников, и они почти не размножаются.

В течение последующих лет растительные остатки, богатые питательными веществами, минерализуются; питательные эле­менты поглощаются растениями; количество пищи- леммингов и ее питательная ценность возрастают; численность леммингов вновь стремительно идет вверх; хищники, хорошо кормясь, начи­нают быстро размножаться. Таким образом, в биогеоценозе популяции организмов взаимно ограничивают свою численность, благодаря чему данная экосистема существует длительное время.

Каково значение саморегуляции численности, мы понимаем особенно хорошо, сталкиваясь с явлениями, когда саморегуля­ция нарушается. Это обычно происходит в тех случаях, когда че­ловек нарушает сложившуюся структуру сообществ. Примером может служить история с кроликами в Австралии.

Когда человек из Европы стал переселятся на другие конти­ненты, он повез с собой и домашних животных, в том числе кро­ликов. В 1859 г. на одной из ферм Австралии выпустили 12 пар привезенных зверьков. В биогеоценозах Австралии было слиш­ком мало хищников, чьей пищей могли бы быть кролики. Через 40 лет численность кроликов достигла нескольких сот миллионов особей. Они расселились почти по всему континенту, разоряя лу­га и пастбища, выедая проростки местной сосны, и нанесли урон экономике страны.

Таким образом, численность особей в природных экосистемах саморегулируется. Нарушение естественных цепей питания под воздействием антропогенного фактора, неразумное вмешатель­ство в экосистемы может привести к неконтролируемому росту численности особей отдельных популяций и к нарушению при­родных экологических сообществ.

СМЕНА ЭКОСИСТЕМ

Конкретный биогеоценоз не существует вечно. Рано или позд­но он сменяется другим. Смены происходят под влиянием изме­нения среды самими живыми организмами, при смене климати­ческих условий, в процессе эволюции жизни на Земле, под влия­нием человека.