Контроль параметров АЦП

Страница 6

Автоматическое измерение tпр подобных АЦП иллю­стрируется рис. 10. Отличие данной схемы от схемы рис. 9 состоит в том, что момент выдачи выходной информации с АЦП в устройство сравнения кодов УСК относительно импульса запуска АЦП можно менять с помощью программируемой линии задержки ЛЗ, обес­печивающей запись выходного кода АЦП в запоминаю­щий регистр ЗРг1 в конкретный момент времени /,, от­стоящий от импульса запуска АЦП на известное число п дискретных значений δt. Время задержки между им­пульсами запуска и считывания выходного сигнала АЦП определяется соотношением tзд =nδt. Момент записи вы­ходного кода АЦП в регистр ЗРг1 и передачи его кода в УСК последовательно приближается к моменту запуска АЦП до тех пор, пока погрешность преобразования АЦП не превысит допустимое значение .

Для ис­ключения влияния погрешности формирования входного сигнала АЦП и его статической погрешности преобразо­вания на определение динамической погрешности АЦП устройством сравнения кодов сопоставляют текущее зна­чение выходного сигнала АЦП при с его вы­ходным сигналом Ni' для режима преобразования, когда . Для этого при управляющем коде Ni на входе об­разцового ЦАП результат преобразования АЦП Ni' в статическом режиме его работы (при tзд>>tпр) записы­вается в запоминающий регистр ЗРг2 и затем сравнива­ется с текущим результатом преобразования АЦП Ni' при уменьшении tзд. В момент времени, когда выходной сигнал AN устройства сравнения кодов превысит допустимую погрешность преобразования, уменьшение времен­ной задержки tзд устройством управления УУ прекраща­ется и производится регистрация ее значения tзд=tпр= =nδt=KNx, т. е. время преобразования tпр пропорцио­нально входному коду Nx программируемой линии за­держки.

Для преобразователей, не использующих команду внешнего запуска и не формирующих сигнал окончания цикла преобразования, время преобразования tпр определяют путем измерения минимального временного интервала между моментами подачи ступенчатого входного сигнала АЦП и выдачи сигнала преобразования, находящегося в пределах допустимых значений. Единственное отличие схемы, обеспечивающей контроль tпр таких АЦП, от предыдущей состоит в том, что момент начала преоб­разования совпадает с моментом подачи через ключ К (показанный на рис. 10 пунктиром), управляемый им­пульсом запуска генератора Г, входного воздействия с ЦАП на контролируемый АЦП. Сложность реализации такой схемы, особенно для контроля быстродействующих АЦП, заключается в высоких требованиях к параметрам формируемого ключом входного воздействия АЦП, вре­мя достижения которым номинального значения должно быть много меньше времени преобразования контроли­руемого АЦП. Регистр ЗРг2, запоминающий результат преобразования АЦП в статическом режиме, позволяет исключить статическую погрешность ключа (в том числе его временную нестабильность) и тем самым значитель­но уменьшить требования к параметрам входного сигна­ла АЦП.

Схема устройства измерения времени преобразования tпр тактируемых АЦП (рис. 11), в которых начало преобразования совпадает с моментом поступления им­пульса запуска (синхронизирующего импульса), отлича­ется от предыдущих схем тем, что частота fг тактовых импульсов генератора Г возрастает до момента превыше­ния результатом преобразования контролируемого АЦП допустимого значения, после чего с помощью устройства измерения частоты Ч производят измерение частоты так­товых импульсов, определяющих время преобразования: tnp=n/fr, где п—число тактов уравновешивания за один цикл измерения, зависящее от разрядности контролируе­мого АЦП.

В данной главе были рассмотрены основные структу­ры ИМС АЦП, параметры и методы их контро­ля. Проведенный анализ методов контроля позволяет сде­лать вывод, что наиболее универсальным является метод, использующий образцовый ЦАП, на базе которого воз­можно построение автоматизированного КИО для провер­ки как ЦАП, так и АЦП. Среди контролируемых парамет­ров наибольшую сложность с точки зрения обеспечения их контроля представляют нелинейность характеристи­ки преобразователей и их время преобразования. В первом случае требуется образцовый преобразователь с высокой разрешающей способностью и линейностью, во втором — широкополосный усилитель и быстродействующий стробируемый дискриминатор

уровней с высокой чувстви­тельностью по амплитуде. Все это свидетельствует о том, что создание автоматизированного КИО для ИМС АЦП является очень сложной научно-технической про­блемой. Непрерывное совершенствование параметров вы­пускаемых ИМС АЦП, повышение их разрешаю­щей способности, быстродействия требуют дальнейшего совершенствования существующих и разработки новых методов и средств контроля. Появление преобразователей с числом разрядов 16 и более вызывает необходимость создания КИО, которое по точностным характеристикам приближается к эталонным средствам. Обеспечение до­стоверного контроля подобных преобразователей стано­вится возможным лишь в случае создания КИО, в кото­ром для получения результата измерения широко исполь­зуется вычислительная техника, позволяющая проводить статистическую обработку результатов отсчета, вводить дополнительные коррекции и т. д. При этом желаемый ре­зультат может быть достигнут, если КИО работает на специально оборудованном метрологическом участке, ис­ключающем воздействие на него различных внешних де­стабилизирующих факторов.

Список использованных источников

1. Измерения и контроль в микроэлектронике: Учебное пособие по специальностям электронной техники/Дубовой Н.Д., Осокин В.И., Очков А.С. и др.; Под ред. А.А.Сазонова.- М.:Высш. Шк.,1984.-367с., ил.

[ПВ1]